redis下,数据库是由一个整数索引标识,而不是由一个数据库名称。默认情况下,一个客户端连接到数据库0。redis配置文件中下面的参数来控制数据库总数:
/etc/redis/redis.conf 文件中,有个配置项 databases = 16 //默认有16个数据库
可以通过下面的命令来切换到不同的数据库下
随后,所有的命令将使用数据库3,知道你明确的切换到另一个数据库下。
每个数据库都有属于自己的空间,不必担心之间的key冲突。
不同的数据库下,相同的key取到各自的值。
flushdb命令清除数据,只会清除当前的数据库下的数据,不会影响到其他数据库。
flushall命令会清除这个实例的数据。在执行这个命令前要格外小心。
数据库的数量是可以配置的,默认情况下是16个。修改redis.conf下的databases指令:
redis没有提供任何方法来关联标识不同的数据库。因此,需要你来跟踪什么数据存储到哪个数据库下。
因此上面的快开启200个实例的场景,可以使用不同的数据库来存储,而不必开启如此那么多的实例。
redis 中如何切换db
标签:img sql 文件中 -o etc wrap 关联 not 场景
小编还为您整理了以下内容,可能对您也有帮助:
redis 怎么切换到一个数据库
语法
redis Select 命令基本语法如下:
redis 127.0.0.1:6379> SELECT index
可用版本
>= 1.0.0
返回值
总是返回 OK 。
实例
redis 127.0.0.1:6379> SET db_number 0 # 默认使用 0 号数据库OK redis 127.0.0.1:6379> SELECT 1 # 使用 1 号数据库OK redis 127.0.0.1:6379[1]> GET db_number # 已经切换到 1 号数据库,注意 Redis 现在的命令提示符多了个 [1](nil)
redis 怎么切换到一个数据库
语法
redis Select 命令基本语法如下:
redis 127.0.0.1:6379> SELECT index
可用版本
>= 1.0.0
返回值
总是返回 OK 。
实例
redis 127.0.0.1:6379> SET db_number 0 # 默认使用 0 号数据库OK redis 127.0.0.1:6379> SELECT 1 # 使用 1 号数据库OK redis 127.0.0.1:6379[1]> GET db_number # 已经切换到 1 号数据库,注意 Redis 现在的命令提示符多了个 [1](nil)
thinkphp redis 怎么选择数据库
1、redis 中的每一个数据库,都由一个 redisDb 的结构存储。其中,redisDb.id 存储着 redis 数据库以整数表示的号码。redisDb.dict 存储着该库所有的键值对数据。redisDb.expires 保存着每一个键的过期时间。
2、当redis 服务器初始化时,会预先分配 16 个数据库(该数量可以通过配置文件配置),所有数据库保存到结构 redisServer 的一个成员 redisServer.db 数组中。当我们选择数据库 select number 时,程序直接通过 redisServer.db[number] 来切换数据库。有时候当程序需要知道自己是在哪个数据库时,直接读取 redisDb.id 即可。
3、既然我们知道一个数据库的所有键值都存储在redisDb.dict中,那么我们要知道如果找到key的位置,就有必要了解一下dict 的结构了:
typedef struct dict {
// 特定于类型的处理函数
dictType *type;
// 类型处理函数的私有数据
void *privdata;
// 哈希表(2个)
dictht ht[2];
// 记录 rehash 进度的标志,值为-1 表示 rehash 未进行
int rehashidx;
// 当前正在运作的安全迭代器数量
int iterators;
} dict;
由上述的结构可以看出,redis 的字典使用哈希表作为其底层实现。dict 类型使用的两个指向哈希表的指针,其中 0 号哈希表(ht[0])主要用于存储数据库的所有键值,而1号哈希表主要用于程序对 0 号哈希表进行 rehash 时使用,rehash 一般是在添加新值时会触发,这里不做过多的赘述。所以redis 中查找一个key,其实就是对进行该dict 结构中的 ht[0] 进行查找操作。
4、既然是哈希,那么我们知道就会有哈希碰撞,那么当多个键哈希之后为同一个值怎么办呢?redis采取链表的方式来存储多个哈希碰撞的键。也就是说,当根据key的哈希值找到该列表后,如果列表的长度大于1,那么我们需要遍历该链表来找到我们所查找的key。当然,一般情况下链表长度都为是1,所以时间复杂度可看作o(1)。
二、当redis 拿到一个key 时,如果找到该key的位置。
了解了上述知识之后,我们就可以来分析redis如果在内存找到一个key了。
1、当拿到一个key后, redis 先判断当前库的0号哈希表是否为空,即:if (dict->ht[0].size == 0)。如果为true直接返回NULL。
2、判断该0号哈希表是否需要rehash,因为如果在进行rehash,那么两个表中者有可能存储该key。如果正在进行rehash,将调用一次_dictRehashStep方法,_dictRehashStep 用于对数据库字典、以及哈希键的字典进行被动 rehash,这里不作赘述。
3、计算哈希表,根据当前字典与key进行哈希值的计算。
4、根据哈希值与当前字典计算哈希表的索引值。
5、根据索引值在哈希表中取出链表,遍历该链表找到key的位置。一般情况,该链表长度为1。
6、当 ht[0] 查找完了之后,再进行了次rehash判断,如果未在rehashing,则直接结束,否则对ht[1]重复345步骤。
到此我们就找到了key在内存中的位置了。
每天一个知识点:哨兵挂了,Redis 主从库还能切换吗?
直接抛结论,可能可以。实际上,一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。那为什么是可能呢?这就要了解哨兵工作的基本原理了。
在配置哨兵的信息时,我们只需要设置主库的 IP 和端口,并没有配置其他哨兵的连接信息,因为哨兵不需要知道其他的哨兵信息。那么哨兵之间是如何互相发现的呢?这要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。实际上,哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。
除了哨兵实例,我们自己编写的应用程序也可以通过 Redis 进行消息的发布和订阅。所以,为了区分不同应用的消息,Redis 会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。
哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。
这是由哨兵向主库发送 INFO 命令来完成的。哨兵给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。
从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。
确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。
每天一个知识点:哨兵挂了,Redis 主从库还能切换吗?
直接抛结论,可能可以。实际上,一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。那为什么是可能呢?这就要了解哨兵工作的基本原理了。
在配置哨兵的信息时,我们只需要设置主库的 IP 和端口,并没有配置其他哨兵的连接信息,因为哨兵不需要知道其他的哨兵信息。那么哨兵之间是如何互相发现的呢?这要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。实际上,哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。
除了哨兵实例,我们自己编写的应用程序也可以通过 Redis 进行消息的发布和订阅。所以,为了区分不同应用的消息,Redis 会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。
哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。
这是由哨兵向主库发送 INFO 命令来完成的。哨兵给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。
从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。
确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。
redisdb容量使用情况
阿里云、腾讯云云数据库Redis版有256个DB,从DB0到DB255。
数据库是由一个整数索引标识,而不是由一个数据库名称。默认情况下,一个客户端连接到数据库0。
每个数据库都有属于自己的空间,不必担心之间的key冲突。
每个DB没有单独的内存占用量,DB可以使用的内存容量受Redis实例的总内存。
您可以使用SELECT命令在不同DB之间切换。
redis缓存穿透,频繁查询db,怎么解决
先来说一下缓存穿透的概念:
缓存穿透是指查询的key不存在,从而缓存查询不到而查询了数据库。
解决方法:
把所有存在的key都存到另外一个存储的Set集合里,查询时可以先查询key是否存在。
干脆简单一些,给查询不到的key也加一个标识空值的Value,这样就不会去查询数据库了,比如场景为查询省市区街道对应的移动营业厅,若是某街道确实没有移动营业厅,key规则不变,value可以设置为"0"等无意义的字符。当然此种方案要保证缓存集群的高可用。
这些Key可能不是永远不存在,所以需要根据业务场景来设置过期时间。
redis缓存穿透,频繁查询db,怎么解决
先来说一下缓存穿透的概念:
缓存穿透是指查询的key不存在,从而缓存查询不到而查询了数据库。
解决方法:
把所有存在的key都存到另外一个存储的Set集合里,查询时可以先查询key是否存在。
干脆简单一些,给查询不到的key也加一个标识空值的Value,这样就不会去查询数据库了,比如场景为查询省市区街道对应的移动营业厅,若是某街道确实没有移动营业厅,key规则不变,value可以设置为"0"等无意义的字符。当然此种方案要保证缓存集群的高可用。
这些Key可能不是永远不存在,所以需要根据业务场景来设置过期时间。
redis怎么把db1中的数据复制到db2中
网页链接 使用aop或者rdb的文件直接导入进去就可以了
redis怎么把db1中的数据复制到db2中
网页链接 使用aop或者rdb的文件直接导入进去就可以了
thinkphp5模型如何使用redis操作数据库CURD操作
模型中添加如下代码,可实现更新或插入前删除缓存:
protected static function init()
{
TurnGiftSetting::beforeInsert(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
TurnGiftSetting::beforeUpdate(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
TurnGiftSetting::beforeDelete(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
TurnGiftSetting::beforeWrite(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
}
thinkphp5模型如何使用redis操作数据库CURD操作
模型中添加如下代码,可实现更新或插入前删除缓存:
protected static function init()
{
TurnGiftSetting::beforeInsert(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
TurnGiftSetting::beforeUpdate(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
TurnGiftSetting::beforeDelete(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
TurnGiftSetting::beforeWrite(function ($model) {
$redis = new Redis(config('redis'));
$redis->rm(self::$redisKey);
});
}
如何连接redis数据库
1、在配置文件redis.conf中把绑定的Ip注释掉
2、在配置文件redis.conf中把protected-mode 改为 no
3、在配置文件redis.conf中把requirepass 设置redis访问授权密码(自己随意设置就好),也可以登录redis客户端使用命令设置:如下:
./redis-cli
config set requirepass 123 //123是密码
经过以上三步基本就可以了,不过也有特殊情况,访问的端口号6379有可能会被防火墙拦截,需要关闭系统的防火墙或取消对6379端口的拦截,这里不在细述。
接下来就可以创建项目实现操作redis数据库了。在这里我用的开发工具是eclipse,在eclipse中创建一个java Project项目如下图所示:
项目创建完成后,在src同级目录下创建lib文件夹,导入操作数据库所需jar包(晚上自行下载),jedis用来操作数据库,commons-pool用来实现数据库连接池。
启动redis服务器:
创建RedisDemoSimple.java代码如下:
控制台打印如下:
启动redis客户端查询插入数据库的值:
到此就连接成功了。
如何连接redis数据库
1、在配置文件redis.conf中把绑定的Ip注释掉
2、在配置文件redis.conf中把protected-mode 改为 no
3、在配置文件redis.conf中把requirepass 设置redis访问授权密码(自己随意设置就好),也可以登录redis客户端使用命令设置:如下:
./redis-cli
config set requirepass 123 //123是密码
经过以上三步基本就可以了,不过也有特殊情况,访问的端口号6379有可能会被防火墙拦截,需要关闭系统的防火墙或取消对6379端口的拦截,这里不在细述。
接下来就可以创建项目实现操作redis数据库了。在这里我用的开发工具是eclipse,在eclipse中创建一个java Project项目如下图所示:
项目创建完成后,在src同级目录下创建lib文件夹,导入操作数据库所需jar包(晚上自行下载),jedis用来操作数据库,commons-pool用来实现数据库连接池。
启动redis服务器:
创建RedisDemoSimple.java代码如下:
控制台打印如下:
启动redis客户端查询插入数据库的值:
到此就连接成功了。
Redis持久化
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。理解掌握持久化机制对于Redis运维非常重要。本章内容如下:
·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。
·其次对常见持久化问题进行分析定位和优化。
·最后结合Redis常见 的单机多实例部署场景进行优化。
5.1 RDB
RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
5.1.1 触发机制
手动触发分别对应save和bgsave命令:
·save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。运行save命令对应
的Redis日志如下:
* DB saved on disk
·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行bgsave命令对应的Redis日志如下:
* Background saving started by pid 3151
* DB saved on disk
* RDB: 0 MB of memory used by copy-on-write
* Background saving terminated with success
显然bgsave命令是针对save阻塞问题做的优化。因此Redis内部所有的涉及RDB的操作都采用bgsave的方式,而save命令已经废弃。
除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景:
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点,更多细节见6.3节介绍的复制原理。
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。
5.1.2 流程说明
bgsave是主流的触发RDB持久化方式,下面根据图5-1了解它的运作流程。
1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见info Persistence下的rdb_*相关选项。
5.1.3 RDB文件的处理
保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
运维提示
当遇到坏盘或磁盘写满等情况时,可以通过config set dir{newDir}在线修改文件路径到可用的磁盘路径,之后执行bgsave进行磁盘切换,同样适用于AOF持久化文件。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。
运维提示
虽然压缩RDB会消耗CPU,但可大幅降低文件的体积,方便保存到硬盘或通过网络发送给从节点,因此线上建议开启。
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:
# Short read or OOM loading DB. Unrecoverable error, aborting now.
这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。
5.1.4 RDB的优缺点
RDB的优点:
·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份,并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。
·Redis加载RDB恢复数据远远快于AOF的方式。
RDB的缺点:
·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。
5.2 AOF
AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。理解掌握好AOF持久化机制对我们兼顾数据安全性和性能非常有帮助。
5.2.1 使用AOF
开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如图5-2所示。
1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。了解AOF工作流程之后,下面针对每个步骤做详细介绍。
5.2.2 命令写入
AOF命令写入的内容直接是文本协议格式。例如set hello world这条命令,在AOF缓冲区会追加如下文本:*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n
Redis协议格式具体说明见4.1客户端协议小节,这里不再赘述,下面介
绍关于AOF的两个疑惑:
1)AOF为什么直接采用文本协议格式?可能的理由如下:
·文本协议具有很好的兼容性。
·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。
·文本协议具有可读性,方便直接修改和处理。
2)AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
5.2.3 文件同步
Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制,不同值的含义如表5-1所示。
表5-1 AOF缓冲区同步文件策略
系统调用write和fsync说明:
·write操作会触发延迟写(delayed write)机制。Linux在内核提供页缓冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。除了write、fsync,Linux还提供了sync、fdatasync操作,具体API说明参
见:http://linux.die.net/man/2/write,http://linux.die.net/man/2/fsync,http://linux.die.net/man/2/sync
·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。
·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。
·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据。(严格来说最多丢失1秒数据是不准确的,5.3节会做具体介绍到。)
5.2.4 重写机制
随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
重写后的AOF文件为什么可以变小?有如下原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set
a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF文件可以更快地被Redis加载。AOF重写过程可以手动触发和自动触发:
·手动触发:直接调用bgrewriteaof命令。
·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。
·auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。当触发AOF重写时,内部做了哪些事呢?下面结合图5-3介绍它的运行流程。
图5-3 AOF重写运作流程
流程说明:
1)执行AOF重写请求。
如果当前进程正在执行AOF重写,请求不执行并返回如下响应:
ERR Background append only file rewriting already in progress
如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:
Background append only file rewriting scheled
2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。
5.2.5 重启加载
AOF和RDB文件都可以用于服务器重启时的数据恢复。如图5-4所示,表示Redis持久化文件加载流程。
流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:
* DB loaded from append only file: 5.841 seconds
2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:
* DB loaded from disk: 5.586 seconds
3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
5.2.6 文件校验
加载损坏的AOF文件时会拒绝启动,并打印如下日志:
# Bad file format reading the append only file: make a backup of your AOF file,
then use ./redis-check-aof --fix <filename>
运维提示
对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。
AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印
如下警告日志:
# !!! Warning: short read while loading the AOF file !!!
# !!! Truncating the AOF at offset 397856725 !!!
# AOF loaded anyway because aof-load-truncated is enabled
5.3 问题定位与优化
Redis持久化功能一直是影响Redis性能的高发地,本节我们结合常见的持久化问题进行分析定位和优化。
5.3.1 fork操作
当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建子进程,对于大多数操作系统来说fork是个重量级错误。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存页表。例如对于10GB的Redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关,如果使用虚拟化技术,特别是Xen虚拟机,fork操作会更耗时。
fork耗时问题定位:对于高流量的Redis实例OPS可达5万以上,如果fork操作耗时在秒级别将拖Redis几万条命令执行,对线上应用延迟影响非常明显。正常情况下fork耗时应该是每GB消耗20毫秒左右。可以在info stats统计中查latest_fork_usec指标获取最近一次fork操作耗时,单位微秒。
如何改善fork操作的耗时:
1)优先使用物理机或者高效支持fork操作的虚拟化技术,避免使用Xen。
2)控制Redis实例最大可用内存,fork耗时跟内存量成正比,线上建议每个Redis实例内存控制在10GB以内。
3)合理配置Linux内存分配策略,避免物理内存不足导致fork失败,具体细节见12.1节“Linux配置优化”。
4)降低fork操作的频率,如适度放宽AOF自动触发时机,避免不必要的全量复制等。
5.3.2 子进程开销监控和优化
子进程负责AOF或者RDB文件的重写,它的运行过程主要涉及CPU、内存、硬盘三部分的消耗。
1.CPU
·CPU开销分析。子进程负责把进程内的数据分批写入文件,这个过程属于CPU密集操作,通常子进程对单核CPU利用率接近90%.
·CPU消耗优化。Redis是CPU密集型服务,不要做绑定单核CPU操作。由于子进程非常消耗CPU,会和父进程产生单核资源竞争。不要和其他CPU密集型服务部署在一起,造成CPU过度竞争。如果部署多个Redis实例,尽量保证同一时刻只有一个子进程执行重写工作,具体细节见5.4节多实例部署”。
2.内存
·内存消耗分析。子进程通过fork操作产生,占用内存大小等同于父进程,理论上需要两倍的内存来完成持久化操作,但Linux有写时复制机制(copy-on-write)。父子进程会共享相同的物理内存页,当父进程处理写请求时会把要修改的页创建副本,而子进程在fork操作过程*享整个父进程内存快照。
·内存消耗监控。RDB重写时,Redis日志输出容如下:
* Background saving started by pid 7692
* DB saved on disk
* RDB: 5 MB of memory used by copy-on-write
* Background saving terminated with success
如果重写过程中存在内存修改操作,父进程负责创建所修改内存页的副本,从日志中可以看出这部分内存消耗了5MB,可以等价认为RDB重写消耗了5MB的内存。
AOF重写时,Redis日志输出容如下:
* Background append only file rewriting started by pid 8937
* AOF rewrite child asks to stop sending diffs.
* Parent agreed to stop sending diffs. Finalizing AOF...
* Concatenating 0.00 MB of AOF diff received from parent.
* SYNC append only file rewrite performed
* AOF rewrite: 53 MB of memory used by copy-on-write
* Background AOF rewrite terminated with success
* Resial parent diff successfully flushed to the rewritten AOF (1.49 MB)
* Background AOF rewrite finished successfully
父进程维护页副本消耗同RDB重写过程类似,不同之处在于AOF重写需要AOF重写缓冲区,因此根据以上日志可以预估内存消耗为:53MB+1.49MB,也就是AOF重写时子进程消耗的内存量。
运维提示
编写shell脚本根据Redis日志可快速定位子进程重写期间内存过度消耗情况。
内存消耗优化:
1)同CPU优化一样,如果部署多个Redis实例,尽量保证同一时刻只有一个子进程在工作。
2)避免在大量写入时做子进程重写操作,这样将导致父进程维护大量页副本,造成内存消耗。Linux kernel在2.6.38内核增加了Transparent Huge Pages(THP),支持huge page(2MB)的页分配,默认开启。当开启时可以降低fork创建子进程的速度,但执行fork之后,如果开启THP,复制页单位从原来4KB变为2MB,会大幅增加重写期间父进程内存消耗。建议设置“sudo echo never>/sys/kernel/mm/transparent_hugepage/enabled”关闭THP。更多THP细节和配置见12.1Linux配置优化”。
3.硬盘
·硬盘开销分析。子进程主要职责是把AOF或者RDB文件写入硬盘持久化。势必造成硬盘写入压力。根据Redis重写AOF/RDB的数据量,结合系统工具如sar、iostat、iotop等,可分析出重写期间硬盘负载情况。·硬盘开销优化。优化方法如下:
a)不要和其他高硬盘负载的服务部署在一起。如:存储服务、消息队列服务等。
b)AOF重写时会消耗大量硬盘IO,可以开启配置no-appendfsync-on-rewrite,默认关闭。表示在AOF重写期间不做fsync操作。
c)当开启AOF功能的Redis用于高流量写入场景时,如果使用普通机械磁盘,写入吞吐一般在100MB/s左右,这时Redis实例的瓶颈主要在AOF同步硬盘上。
d)对于单机配置多个Redis实例的情况,可以配置不同实例分盘存储AOF文件,分摊硬盘写入压力。运维提示
配置no-appendfsync-on-rewrite=yes时,在极端情况下可能丢失整个AOF重写期间的数据,需要根据数据安全性决定是否配置。
5.3.3 AOF追加阻塞
当开启AOF持久化时,常用的同步硬盘的策略是everysec,用于平衡性能和数据安全性。对于这种方式,Redis使用另一条线程每秒执行fsync同步硬盘。当系统硬盘资源繁忙时,会造成Redis主线程阻塞,如图5-5所示。
阻塞流程分析:
1)主线程负责写入AOF缓冲区。
2)AOF线程负责每秒执行一次同步磁盘操作,并记录最近一次同步时间。
3)主线程负责对比上次AOF同步时间:
·如果距上次同步成功时间在2秒内,主线程直接返回。
·如果距上次同步成功时间超过2秒,主线程将会阻塞,直到同步操作完成。
通过对AOF阻塞流程可以发现两个问题:
1)everysec配置最多可能丢失2秒数据,不是1秒。
2)如果系统fsync缓慢,将会导致Redis主线程阻塞影响效率。
AOF阻塞问题定位:
1)发生AOF阻塞时,Redis输出如下日志,用于记录AOF fsync阻塞导致拖慢Redis服务的行为:
Asynchronous AOF fsync is taking too long (disk is busy). Writing the AOF buffer
without waiting for fsync to complete, this may slow down Redis
2)每当发生AOF追加阻塞事件发生时,在info Persistence统计中,aof_delayed_fsync指标会累加,查看这个指标方便定位AOF阻塞问题。
3)AOF同步最多允许2秒的延迟,当延迟发生时说明硬盘存在高负载问题,可以通过监控工具如iotop,定位消耗硬盘IO资源的进程。优化AOF追加阻塞问题主要是优化系统硬盘负载,优化方式见上一节。
5.4 多实例部署
Redis单线程架构导致无法充分利用CPU多核特性,通常的做法是在一台机器上部署多个Redis实例。当多个实例开启AOF重写后,彼此之间会产生对CPU和IO的竞争。本节主要介绍针对这种场景的分析和优化。上一节介绍了持久化相关的子进程开销。对于单机多Redis部署,如果同一时刻运行多个子进程,对当前系统影响将非常明显,因此需要采用一种措施,把子进程工作进行隔离。Redis在info Persistence中为我们提供了监控子进程运行状况的度量指标,如表5-2所示。
我们基于以上指标,可以通过外部程序轮询控制AOF重写操作的执行,整个过程如图5-6所示。
流程说明:
1)外部程序定时轮询监控机器(machine)上所有Redis实例。
2)对于开启AOF的实例,查看(aof_current_size-aof_base_size)/aof_base_size确认增长率。
3)当增长率超过特定阈值(如100%),执行bgrewriteaof命令手动触发当前实例的AOF重写。
4)运行期间循环检查aof_rewrite_in_progress和aof_current_rewrite_time_sec指标,直到AOF重写结束。
5)确认实例AOF重写完成后,再检查其他实例并重复2)~4)步操作。从而保证机器内每个Redis实例AOF重写串行化执行。
5.5 本章重点回顾
1)Redis提供了两种持久化方式:RDB和AOF。
2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。
3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子进程生成RDB避免阻塞。
4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。
5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。
6)子进程执行期间使用copy-on-write机制与父进程共享内存,避免内存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。
7)持久化阻塞主线程场景有:fork阻塞和AOF追加阻塞。fork阻塞时间跟内存量和系统有关,AOF追加阻塞说明硬盘资源紧张。
8)单机下部署多个实例时,为了防止出现多个子进程执行重写操作,建议做隔离控制,避免CPU和IO资源竞争。
Redis持久化
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。理解掌握持久化机制对于Redis运维非常重要。本章内容如下:
·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。
·其次对常见持久化问题进行分析定位和优化。
·最后结合Redis常见 的单机多实例部署场景进行优化。
5.1 RDB
RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
5.1.1 触发机制
手动触发分别对应save和bgsave命令:
·save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。运行save命令对应
的Redis日志如下:
* DB saved on disk
·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行bgsave命令对应的Redis日志如下:
* Background saving started by pid 3151
* DB saved on disk
* RDB: 0 MB of memory used by copy-on-write
* Background saving terminated with success
显然bgsave命令是针对save阻塞问题做的优化。因此Redis内部所有的涉及RDB的操作都采用bgsave的方式,而save命令已经废弃。
除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景:
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点,更多细节见6.3节介绍的复制原理。
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。
5.1.2 流程说明
bgsave是主流的触发RDB持久化方式,下面根据图5-1了解它的运作流程。
1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见info Persistence下的rdb_*相关选项。
5.1.3 RDB文件的处理
保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
运维提示
当遇到坏盘或磁盘写满等情况时,可以通过config set dir{newDir}在线修改文件路径到可用的磁盘路径,之后执行bgsave进行磁盘切换,同样适用于AOF持久化文件。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。
运维提示
虽然压缩RDB会消耗CPU,但可大幅降低文件的体积,方便保存到硬盘或通过网络发送给从节点,因此线上建议开启。
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:
# Short read or OOM loading DB. Unrecoverable error, aborting now.
这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。
5.1.4 RDB的优缺点
RDB的优点:
·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份,并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。
·Redis加载RDB恢复数据远远快于AOF的方式。
RDB的缺点:
·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。
5.2 AOF
AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。理解掌握好AOF持久化机制对我们兼顾数据安全性和性能非常有帮助。
5.2.1 使用AOF
开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如图5-2所示。
1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。了解AOF工作流程之后,下面针对每个步骤做详细介绍。
5.2.2 命令写入
AOF命令写入的内容直接是文本协议格式。例如set hello world这条命令,在AOF缓冲区会追加如下文本:*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n
Redis协议格式具体说明见4.1客户端协议小节,这里不再赘述,下面介
绍关于AOF的两个疑惑:
1)AOF为什么直接采用文本协议格式?可能的理由如下:
·文本协议具有很好的兼容性。
·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。
·文本协议具有可读性,方便直接修改和处理。
2)AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
5.2.3 文件同步
Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制,不同值的含义如表5-1所示。
表5-1 AOF缓冲区同步文件策略
系统调用write和fsync说明:
·write操作会触发延迟写(delayed write)机制。Linux在内核提供页缓冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。除了write、fsync,Linux还提供了sync、fdatasync操作,具体API说明参
见:http://linux.die.net/man/2/write,http://linux.die.net/man/2/fsync,http://linux.die.net/man/2/sync
·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。
·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。
·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据。(严格来说最多丢失1秒数据是不准确的,5.3节会做具体介绍到。)
5.2.4 重写机制
随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
重写后的AOF文件为什么可以变小?有如下原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set
a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF文件可以更快地被Redis加载。AOF重写过程可以手动触发和自动触发:
·手动触发:直接调用bgrewriteaof命令。
·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。
·auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。当触发AOF重写时,内部做了哪些事呢?下面结合图5-3介绍它的运行流程。
图5-3 AOF重写运作流程
流程说明:
1)执行AOF重写请求。
如果当前进程正在执行AOF重写,请求不执行并返回如下响应:
ERR Background append only file rewriting already in progress
如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:
Background append only file rewriting scheled
2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。
5.2.5 重启加载
AOF和RDB文件都可以用于服务器重启时的数据恢复。如图5-4所示,表示Redis持久化文件加载流程。
流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:
* DB loaded from append only file: 5.841 seconds
2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:
* DB loaded from disk: 5.586 seconds
3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
5.2.6 文件校验
加载损坏的AOF文件时会拒绝启动,并打印如下日志:
# Bad file format reading the append only file: make a backup of your AOF file,
then use ./redis-check-aof --fix <filename>
运维提示
对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。
AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印
如下警告日志:
# !!! Warning: short read while loading the AOF file !!!
# !!! Truncating the AOF at offset 397856725 !!!
# AOF loaded anyway because aof-load-truncated is enabled
5.3 问题定位与优化
Redis持久化功能一直是影响Redis性能的高发地,本节我们结合常见的持久化问题进行分析定位和优化。
5.3.1 fork操作
当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建子进程,对于大多数操作系统来说fork是个重量级错误。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存页表。例如对于10GB的Redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关,如果使用虚拟化技术,特别是Xen虚拟机,fork操作会更耗时。
fork耗时问题定位:对于高流量的Redis实例OPS可达5万以上,如果fork操作耗时在秒级别将拖Redis几万条命令执行,对线上应用延迟影响非常明显。正常情况下fork耗时应该是每GB消耗20毫秒左右。可以在info stats统计中查latest_fork_usec指标获取最近一次fork操作耗时,单位微秒。
如何改善fork操作的耗时:
1)优先使用物理机或者高效支持fork操作的虚拟化技术,避免使用Xen。
2)控制Redis实例最大可用内存,fork耗时跟内存量成正比,线上建议每个Redis实例内存控制在10GB以内。
3)合理配置Linux内存分配策略,避免物理内存不足导致fork失败,具体细节见12.1节“Linux配置优化”。
4)降低fork操作的频率,如适度放宽AOF自动触发时机,避免不必要的全量复制等。
5.3.2 子进程开销监控和优化
子进程负责AOF或者RDB文件的重写,它的运行过程主要涉及CPU、内存、硬盘三部分的消耗。
1.CPU
·CPU开销分析。子进程负责把进程内的数据分批写入文件,这个过程属于CPU密集操作,通常子进程对单核CPU利用率接近90%.
·CPU消耗优化。Redis是CPU密集型服务,不要做绑定单核CPU操作。由于子进程非常消耗CPU,会和父进程产生单核资源竞争。不要和其他CPU密集型服务部署在一起,造成CPU过度竞争。如果部署多个Redis实例,尽量保证同一时刻只有一个子进程执行重写工作,具体细节见5.4节多实例部署”。
2.内存
·内存消耗分析。子进程通过fork操作产生,占用内存大小等同于父进程,理论上需要两倍的内存来完成持久化操作,但Linux有写时复制机制(copy-on-write)。父子进程会共享相同的物理内存页,当父进程处理写请求时会把要修改的页创建副本,而子进程在fork操作过程*享整个父进程内存快照。
·内存消耗监控。RDB重写时,Redis日志输出容如下:
* Background saving started by pid 7692
* DB saved on disk
* RDB: 5 MB of memory used by copy-on-write
* Background saving terminated with success
如果重写过程中存在内存修改操作,父进程负责创建所修改内存页的副本,从日志中可以看出这部分内存消耗了5MB,可以等价认为RDB重写消耗了5MB的内存。
AOF重写时,Redis日志输出容如下:
* Background append only file rewriting started by pid 8937
* AOF rewrite child asks to stop sending diffs.
* Parent agreed to stop sending diffs. Finalizing AOF...
* Concatenating 0.00 MB of AOF diff received from parent.
* SYNC append only file rewrite performed
* AOF rewrite: 53 MB of memory used by copy-on-write
* Background AOF rewrite terminated with success
* Resial parent diff successfully flushed to the rewritten AOF (1.49 MB)
* Background AOF rewrite finished successfully
父进程维护页副本消耗同RDB重写过程类似,不同之处在于AOF重写需要AOF重写缓冲区,因此根据以上日志可以预估内存消耗为:53MB+1.49MB,也就是AOF重写时子进程消耗的内存量。
运维提示
编写shell脚本根据Redis日志可快速定位子进程重写期间内存过度消耗情况。
内存消耗优化:
1)同CPU优化一样,如果部署多个Redis实例,尽量保证同一时刻只有一个子进程在工作。
2)避免在大量写入时做子进程重写操作,这样将导致父进程维护大量页副本,造成内存消耗。Linux kernel在2.6.38内核增加了Transparent Huge Pages(THP),支持huge page(2MB)的页分配,默认开启。当开启时可以降低fork创建子进程的速度,但执行fork之后,如果开启THP,复制页单位从原来4KB变为2MB,会大幅增加重写期间父进程内存消耗。建议设置“sudo echo never>/sys/kernel/mm/transparent_hugepage/enabled”关闭THP。更多THP细节和配置见12.1Linux配置优化”。
3.硬盘
·硬盘开销分析。子进程主要职责是把AOF或者RDB文件写入硬盘持久化。势必造成硬盘写入压力。根据Redis重写AOF/RDB的数据量,结合系统工具如sar、iostat、iotop等,可分析出重写期间硬盘负载情况。·硬盘开销优化。优化方法如下:
a)不要和其他高硬盘负载的服务部署在一起。如:存储服务、消息队列服务等。
b)AOF重写时会消耗大量硬盘IO,可以开启配置no-appendfsync-on-rewrite,默认关闭。表示在AOF重写期间不做fsync操作。
c)当开启AOF功能的Redis用于高流量写入场景时,如果使用普通机械磁盘,写入吞吐一般在100MB/s左右,这时Redis实例的瓶颈主要在AOF同步硬盘上。
d)对于单机配置多个Redis实例的情况,可以配置不同实例分盘存储AOF文件,分摊硬盘写入压力。运维提示
配置no-appendfsync-on-rewrite=yes时,在极端情况下可能丢失整个AOF重写期间的数据,需要根据数据安全性决定是否配置。
5.3.3 AOF追加阻塞
当开启AOF持久化时,常用的同步硬盘的策略是everysec,用于平衡性能和数据安全性。对于这种方式,Redis使用另一条线程每秒执行fsync同步硬盘。当系统硬盘资源繁忙时,会造成Redis主线程阻塞,如图5-5所示。
阻塞流程分析:
1)主线程负责写入AOF缓冲区。
2)AOF线程负责每秒执行一次同步磁盘操作,并记录最近一次同步时间。
3)主线程负责对比上次AOF同步时间:
·如果距上次同步成功时间在2秒内,主线程直接返回。
·如果距上次同步成功时间超过2秒,主线程将会阻塞,直到同步操作完成。
通过对AOF阻塞流程可以发现两个问题:
1)everysec配置最多可能丢失2秒数据,不是1秒。
2)如果系统fsync缓慢,将会导致Redis主线程阻塞影响效率。
AOF阻塞问题定位:
1)发生AOF阻塞时,Redis输出如下日志,用于记录AOF fsync阻塞导致拖慢Redis服务的行为:
Asynchronous AOF fsync is taking too long (disk is busy). Writing the AOF buffer
without waiting for fsync to complete, this may slow down Redis
2)每当发生AOF追加阻塞事件发生时,在info Persistence统计中,aof_delayed_fsync指标会累加,查看这个指标方便定位AOF阻塞问题。
3)AOF同步最多允许2秒的延迟,当延迟发生时说明硬盘存在高负载问题,可以通过监控工具如iotop,定位消耗硬盘IO资源的进程。优化AOF追加阻塞问题主要是优化系统硬盘负载,优化方式见上一节。
5.4 多实例部署
Redis单线程架构导致无法充分利用CPU多核特性,通常的做法是在一台机器上部署多个Redis实例。当多个实例开启AOF重写后,彼此之间会产生对CPU和IO的竞争。本节主要介绍针对这种场景的分析和优化。上一节介绍了持久化相关的子进程开销。对于单机多Redis部署,如果同一时刻运行多个子进程,对当前系统影响将非常明显,因此需要采用一种措施,把子进程工作进行隔离。Redis在info Persistence中为我们提供了监控子进程运行状况的度量指标,如表5-2所示。
我们基于以上指标,可以通过外部程序轮询控制AOF重写操作的执行,整个过程如图5-6所示。
流程说明:
1)外部程序定时轮询监控机器(machine)上所有Redis实例。
2)对于开启AOF的实例,查看(aof_current_size-aof_base_size)/aof_base_size确认增长率。
3)当增长率超过特定阈值(如100%),执行bgrewriteaof命令手动触发当前实例的AOF重写。
4)运行期间循环检查aof_rewrite_in_progress和aof_current_rewrite_time_sec指标,直到AOF重写结束。
5)确认实例AOF重写完成后,再检查其他实例并重复2)~4)步操作。从而保证机器内每个Redis实例AOF重写串行化执行。
5.5 本章重点回顾
1)Redis提供了两种持久化方式:RDB和AOF。
2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。
3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子进程生成RDB避免阻塞。
4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。
5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。
6)子进程执行期间使用copy-on-write机制与父进程共享内存,避免内存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。
7)持久化阻塞主线程场景有:fork阻塞和AOF追加阻塞。fork阻塞时间跟内存量和系统有关,AOF追加阻塞说明硬盘资源紧张。
8)单机下部署多个实例时,为了防止出现多个子进程执行重写操作,建议做隔离控制,避免CPU和IO资源竞争。
三分钟读懂redis数据库
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
1. 使用Redis有哪些好处?
(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
(2) 支持丰富数据类型,支持string,list,set,sorted set,hash
(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
2. redis相比memcached有哪些优势?
(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
(2) redis的速度比memcached快很多
(3) redis可以持久化其数据
3. redis常见性能问题和解决方案:
(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
(4) 尽量避免在压力很大的主库上增加从库
(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
4. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据
相关推荐:《Python视频教程》
5. Memcache与Redis的区别都有哪些?
1)、存储方式
Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。
Redis有部份存在硬盘上,这样能保证数据的持久性。
2)、数据支持类型
Memcache对数据类型支持相对简单。
Redis有复杂的数据类型。
3),value大小
redis最大可以达到1GB,而memcache只有1MB
6. Redis 常见的性能问题都有哪些?如何解决?
1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内
7. redis 最适合的场景
Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1.Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2.Redis支持数据的备份,即master-slave模式的数据备份。
3.Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
(1)会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
(2)全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
(3)队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。
(4)排行榜/计数器
Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:
ZRANGE user_scores 0 10 WITHSCORES
Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。
(5)发布/订阅
最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。
三分钟读懂redis数据库
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
1. 使用Redis有哪些好处?
(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
(2) 支持丰富数据类型,支持string,list,set,sorted set,hash
(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
2. redis相比memcached有哪些优势?
(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
(2) redis的速度比memcached快很多
(3) redis可以持久化其数据
3. redis常见性能问题和解决方案:
(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
(4) 尽量避免在压力很大的主库上增加从库
(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
4. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据
相关推荐:《Python视频教程》
5. Memcache与Redis的区别都有哪些?
1)、存储方式
Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。
Redis有部份存在硬盘上,这样能保证数据的持久性。
2)、数据支持类型
Memcache对数据类型支持相对简单。
Redis有复杂的数据类型。
3),value大小
redis最大可以达到1GB,而memcache只有1MB
6. Redis 常见的性能问题都有哪些?如何解决?
1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内
7. redis 最适合的场景
Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1.Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2.Redis支持数据的备份,即master-slave模式的数据备份。
3.Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
(1)会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
(2)全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
(3)队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。
(4)排行榜/计数器
Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:
ZRANGE user_scores 0 10 WITHSCORES
Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。
(5)发布/订阅
最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。