redis-cli> config set appendonly yes
redis-cli> config set save ""
NoSQL之Redis---持久化(persistence)概念原理
标签:
小编还为您整理了以下内容,可能对您也有帮助:
(一)Redis-NoSql是什么、能干嘛,与关系型数据库的区别
大数据时代到来,短视频和大量图片导致数据表非常大,频繁的查询导致传统的关系型数据库难以满足需求,因此非关系型数据库就应运而生。Redis数据库是NoSQL是一种,在分布式数据库的CAP原理中,Redis满足强一致性和高可用性,强一致性就是要保证数据的质量,高可用性即稳定性,本文简单介绍了非关系型数据库是什么、能干嘛,与关系型数据库的区别。
一、NoSQL定义
NoSQL(Not Only SQL),意即“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,例如谷歌或每天为他们的用户收集万亿比特的数据,这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
二、NoSQL的优势
1.易扩展
NoSQL数据库种类繁多,但有一个共同的特点是去掉关系数据库的关系型特性。数据间无关系,这样就非常容易拓展,无形之间在架构层面上带来了可扩展的能力。
2.大数据量高性能
NoSQL数据库具有非常高的读写性能,尤其在大数据量下,一秒钟写8万,读16万次
3.多样灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以根据存储自定义数据格式,而在关系型数据库里增删字段,比如在存储微信用户信息的表里添加一个手机号字段,简直就是噩梦。
4.RDBMS和NoSQL
关系型数据库&非关系型数据库的对比
三、3V+3高
海量:微博
多样:呈现方式是图片、文字等,终端是手机、电脑、pad等。
实时:12306的铁路信息需要做到实时更新,但是做不到绝对的实时,只能做到准实时。
高并发:12306在抢火车票的时候是高并发的
高可扩(扩展性):
横向扩展:针对多台机器,多台机器整合成一个集群
纵向扩展:针对一台机器,2G不够了,插两条4G就变8G,但纵向扩展长期来看总有尽头
四、NoSQL数据模型简介
(一)以一个电商客户、订单、订购、地址模型来对比关系型数据库和非关系型数据库数据库
1.关系型数据库:
2.非关系型数据库:
就像一个jason串一样,被称为聚合模型
(二)思考
为什么上述情况可以用聚合模型来处理?
1.在关系型数据库里用left join 关联查询,但是涉及多张表,查询语句很长很复杂
2.跨库
3.分布式事务无法支持太多并发
·4.NoSQL只要查到客户信息的ID,所有的信息都放在一起,不用像关系型数据库查很多表
(三)、聚合模型
1.KV键-值对
2.文档型数据库(Bson格式比较多):见上截图
Monddb,最像关系型数据库的非关系型数据库
3.列存储数据库:
4. 图关系数据库:
就像我们复杂的亲戚人际关系,如:微博上你的好友关注什么话题
五、在分布式数据库中CAP原理CAP+BASE
(一)CAP
ACID:传统的关系型数据库
CAP:NoSQL
CAP只能三个中满足两个,而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容错性是我们必须要实现的,我们只能在一致性和可用性之间进行权衡。
CA:传统型Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
强一致性(C),淘宝商品的点赞数不用做到强一致性;但公司每日的早晚打卡软件就需要做到强一致性,不然影响员工的KPI
高可用性(A),网站不能崩了
分区容忍性(P)
补充:C与A的选择
(二)BASE
双十一当时可能商品点赞数10000,但是只统计到6000,是弱一致性,但是高峰结束之后还是想让数据不那么离谱,所以加上BASE,BASE最重要的就是最终执行
牺牲C,换取AP
集群就相当于之前的负载均衡
(一)Redis-NoSql是什么、能干嘛,与关系型数据库的区别
标签:操作简单oracle数据库数据格式网络高性能字段分区集群
Redis持久化
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。理解掌握持久化机制对于Redis运维非常重要。本章内容如下:
·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。
·其次对常见持久化问题进行分析定位和优化。
·最后结合Redis常见 的单机多实例部署场景进行优化。
5.1 RDB
RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
5.1.1 触发机制
手动触发分别对应save和bgsave命令:
·save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。运行save命令对应
的Redis日志如下:
* DB saved on disk
·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行bgsave命令对应的Redis日志如下:
* Background saving started by pid 3151
* DB saved on disk
* RDB: 0 MB of memory used by copy-on-write
* Background saving terminated with success
显然bgsave命令是针对save阻塞问题做的优化。因此Redis内部所有的涉及RDB的操作都采用bgsave的方式,而save命令已经废弃。
除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景:
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点,更多细节见6.3节介绍的复制原理。
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。
5.1.2 流程说明
bgsave是主流的触发RDB持久化方式,下面根据图5-1了解它的运作流程。
1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见info Persistence下的rdb_*相关选项。
5.1.3 RDB文件的处理
保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
运维提示
当遇到坏盘或磁盘写满等情况时,可以通过config set dir{newDir}在线修改文件路径到可用的磁盘路径,之后执行bgsave进行磁盘切换,同样适用于AOF持久化文件。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。
运维提示
虽然压缩RDB会消耗CPU,但可大幅降低文件的体积,方便保存到硬盘或通过网络发送给从节点,因此线上建议开启。
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:
# Short read or OOM loading DB. Unrecoverable error, aborting now.
这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。
5.1.4 RDB的优缺点
RDB的优点:
·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份,并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。
·Redis加载RDB恢复数据远远快于AOF的方式。
RDB的缺点:
·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。
5.2 AOF
AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。理解掌握好AOF持久化机制对我们兼顾数据安全性和性能非常有帮助。
5.2.1 使用AOF
开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如图5-2所示。
1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。了解AOF工作流程之后,下面针对每个步骤做详细介绍。
5.2.2 命令写入
AOF命令写入的内容直接是文本协议格式。例如set hello world这条命令,在AOF缓冲区会追加如下文本:*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n
Redis协议格式具体说明见4.1客户端协议小节,这里不再赘述,下面介
绍关于AOF的两个疑惑:
1)AOF为什么直接采用文本协议格式?可能的理由如下:
·文本协议具有很好的兼容性。
·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。
·文本协议具有可读性,方便直接修改和处理。
2)AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
5.2.3 文件同步
Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制,不同值的含义如表5-1所示。
表5-1 AOF缓冲区同步文件策略
系统调用write和fsync说明:
·write操作会触发延迟写(delayed write)机制。Linux在内核提供页缓冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。除了write、fsync,Linux还提供了sync、fdatasync操作,具体API说明参
见:http://linux.die.net/man/2/write,http://linux.die.net/man/2/fsync,http://linux.die.net/man/2/sync
·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。
·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。
·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据。(严格来说最多丢失1秒数据是不准确的,5.3节会做具体介绍到。)
5.2.4 重写机制
随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
重写后的AOF文件为什么可以变小?有如下原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set
a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF文件可以更快地被Redis加载。AOF重写过程可以手动触发和自动触发:
·手动触发:直接调用bgrewriteaof命令。
·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。
·auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。当触发AOF重写时,内部做了哪些事呢?下面结合图5-3介绍它的运行流程。
图5-3 AOF重写运作流程
流程说明:
1)执行AOF重写请求。
如果当前进程正在执行AOF重写,请求不执行并返回如下响应:
ERR Background append only file rewriting already in progress
如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:
Background append only file rewriting scheled
2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。
5.2.5 重启加载
AOF和RDB文件都可以用于服务器重启时的数据恢复。如图5-4所示,表示Redis持久化文件加载流程。
流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:
* DB loaded from append only file: 5.841 seconds
2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:
* DB loaded from disk: 5.586 seconds
3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
5.2.6 文件校验
加载损坏的AOF文件时会拒绝启动,并打印如下日志:
# Bad file format reading the append only file: make a backup of your AOF file,
then use ./redis-check-aof --fix <filename>
运维提示
对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。
AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印
如下警告日志:
# !!! Warning: short read while loading the AOF file !!!
# !!! Truncating the AOF at offset 397856725 !!!
# AOF loaded anyway because aof-load-truncated is enabled
5.3 问题定位与优化
Redis持久化功能一直是影响Redis性能的高发地,本节我们结合常见的持久化问题进行分析定位和优化。
5.3.1 fork操作
当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建子进程,对于大多数操作系统来说fork是个重量级错误。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存页表。例如对于10GB的Redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关,如果使用虚拟化技术,特别是Xen虚拟机,fork操作会更耗时。
fork耗时问题定位:对于高流量的Redis实例OPS可达5万以上,如果fork操作耗时在秒级别将拖Redis几万条命令执行,对线上应用延迟影响非常明显。正常情况下fork耗时应该是每GB消耗20毫秒左右。可以在info stats统计中查latest_fork_usec指标获取最近一次fork操作耗时,单位微秒。
如何改善fork操作的耗时:
1)优先使用物理机或者高效支持fork操作的虚拟化技术,避免使用Xen。
2)控制Redis实例最大可用内存,fork耗时跟内存量成正比,线上建议每个Redis实例内存控制在10GB以内。
3)合理配置Linux内存分配策略,避免物理内存不足导致fork失败,具体细节见12.1节“Linux配置优化”。
4)降低fork操作的频率,如适度放宽AOF自动触发时机,避免不必要的全量复制等。
5.3.2 子进程开销监控和优化
子进程负责AOF或者RDB文件的重写,它的运行过程主要涉及CPU、内存、硬盘三部分的消耗。
1.CPU
·CPU开销分析。子进程负责把进程内的数据分批写入文件,这个过程属于CPU密集操作,通常子进程对单核CPU利用率接近90%.
·CPU消耗优化。Redis是CPU密集型服务,不要做绑定单核CPU操作。由于子进程非常消耗CPU,会和父进程产生单核资源竞争。不要和其他CPU密集型服务部署在一起,造成CPU过度竞争。如果部署多个Redis实例,尽量保证同一时刻只有一个子进程执行重写工作,具体细节见5.4节多实例部署”。
2.内存
·内存消耗分析。子进程通过fork操作产生,占用内存大小等同于父进程,理论上需要两倍的内存来完成持久化操作,但Linux有写时复制机制(copy-on-write)。父子进程会共享相同的物理内存页,当父进程处理写请求时会把要修改的页创建副本,而子进程在fork操作过程*享整个父进程内存快照。
·内存消耗监控。RDB重写时,Redis日志输出容如下:
* Background saving started by pid 7692
* DB saved on disk
* RDB: 5 MB of memory used by copy-on-write
* Background saving terminated with success
如果重写过程中存在内存修改操作,父进程负责创建所修改内存页的副本,从日志中可以看出这部分内存消耗了5MB,可以等价认为RDB重写消耗了5MB的内存。
AOF重写时,Redis日志输出容如下:
* Background append only file rewriting started by pid 8937
* AOF rewrite child asks to stop sending diffs.
* Parent agreed to stop sending diffs. Finalizing AOF...
* Concatenating 0.00 MB of AOF diff received from parent.
* SYNC append only file rewrite performed
* AOF rewrite: 53 MB of memory used by copy-on-write
* Background AOF rewrite terminated with success
* Resial parent diff successfully flushed to the rewritten AOF (1.49 MB)
* Background AOF rewrite finished successfully
父进程维护页副本消耗同RDB重写过程类似,不同之处在于AOF重写需要AOF重写缓冲区,因此根据以上日志可以预估内存消耗为:53MB+1.49MB,也就是AOF重写时子进程消耗的内存量。
运维提示
编写shell脚本根据Redis日志可快速定位子进程重写期间内存过度消耗情况。
内存消耗优化:
1)同CPU优化一样,如果部署多个Redis实例,尽量保证同一时刻只有一个子进程在工作。
2)避免在大量写入时做子进程重写操作,这样将导致父进程维护大量页副本,造成内存消耗。Linux kernel在2.6.38内核增加了Transparent Huge Pages(THP),支持huge page(2MB)的页分配,默认开启。当开启时可以降低fork创建子进程的速度,但执行fork之后,如果开启THP,复制页单位从原来4KB变为2MB,会大幅增加重写期间父进程内存消耗。建议设置“sudo echo never>/sys/kernel/mm/transparent_hugepage/enabled”关闭THP。更多THP细节和配置见12.1Linux配置优化”。
3.硬盘
·硬盘开销分析。子进程主要职责是把AOF或者RDB文件写入硬盘持久化。势必造成硬盘写入压力。根据Redis重写AOF/RDB的数据量,结合系统工具如sar、iostat、iotop等,可分析出重写期间硬盘负载情况。·硬盘开销优化。优化方法如下:
a)不要和其他高硬盘负载的服务部署在一起。如:存储服务、消息队列服务等。
b)AOF重写时会消耗大量硬盘IO,可以开启配置no-appendfsync-on-rewrite,默认关闭。表示在AOF重写期间不做fsync操作。
c)当开启AOF功能的Redis用于高流量写入场景时,如果使用普通机械磁盘,写入吞吐一般在100MB/s左右,这时Redis实例的瓶颈主要在AOF同步硬盘上。
d)对于单机配置多个Redis实例的情况,可以配置不同实例分盘存储AOF文件,分摊硬盘写入压力。运维提示
配置no-appendfsync-on-rewrite=yes时,在极端情况下可能丢失整个AOF重写期间的数据,需要根据数据安全性决定是否配置。
5.3.3 AOF追加阻塞
当开启AOF持久化时,常用的同步硬盘的策略是everysec,用于平衡性能和数据安全性。对于这种方式,Redis使用另一条线程每秒执行fsync同步硬盘。当系统硬盘资源繁忙时,会造成Redis主线程阻塞,如图5-5所示。
阻塞流程分析:
1)主线程负责写入AOF缓冲区。
2)AOF线程负责每秒执行一次同步磁盘操作,并记录最近一次同步时间。
3)主线程负责对比上次AOF同步时间:
·如果距上次同步成功时间在2秒内,主线程直接返回。
·如果距上次同步成功时间超过2秒,主线程将会阻塞,直到同步操作完成。
通过对AOF阻塞流程可以发现两个问题:
1)everysec配置最多可能丢失2秒数据,不是1秒。
2)如果系统fsync缓慢,将会导致Redis主线程阻塞影响效率。
AOF阻塞问题定位:
1)发生AOF阻塞时,Redis输出如下日志,用于记录AOF fsync阻塞导致拖慢Redis服务的行为:
Asynchronous AOF fsync is taking too long (disk is busy). Writing the AOF buffer
without waiting for fsync to complete, this may slow down Redis
2)每当发生AOF追加阻塞事件发生时,在info Persistence统计中,aof_delayed_fsync指标会累加,查看这个指标方便定位AOF阻塞问题。
3)AOF同步最多允许2秒的延迟,当延迟发生时说明硬盘存在高负载问题,可以通过监控工具如iotop,定位消耗硬盘IO资源的进程。优化AOF追加阻塞问题主要是优化系统硬盘负载,优化方式见上一节。
5.4 多实例部署
Redis单线程架构导致无法充分利用CPU多核特性,通常的做法是在一台机器上部署多个Redis实例。当多个实例开启AOF重写后,彼此之间会产生对CPU和IO的竞争。本节主要介绍针对这种场景的分析和优化。上一节介绍了持久化相关的子进程开销。对于单机多Redis部署,如果同一时刻运行多个子进程,对当前系统影响将非常明显,因此需要采用一种措施,把子进程工作进行隔离。Redis在info Persistence中为我们提供了监控子进程运行状况的度量指标,如表5-2所示。
我们基于以上指标,可以通过外部程序轮询控制AOF重写操作的执行,整个过程如图5-6所示。
流程说明:
1)外部程序定时轮询监控机器(machine)上所有Redis实例。
2)对于开启AOF的实例,查看(aof_current_size-aof_base_size)/aof_base_size确认增长率。
3)当增长率超过特定阈值(如100%),执行bgrewriteaof命令手动触发当前实例的AOF重写。
4)运行期间循环检查aof_rewrite_in_progress和aof_current_rewrite_time_sec指标,直到AOF重写结束。
5)确认实例AOF重写完成后,再检查其他实例并重复2)~4)步操作。从而保证机器内每个Redis实例AOF重写串行化执行。
5.5 本章重点回顾
1)Redis提供了两种持久化方式:RDB和AOF。
2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。
3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子进程生成RDB避免阻塞。
4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。
5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。
6)子进程执行期间使用copy-on-write机制与父进程共享内存,避免内存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。
7)持久化阻塞主线程场景有:fork阻塞和AOF追加阻塞。fork阻塞时间跟内存量和系统有关,AOF追加阻塞说明硬盘资源紧张。
8)单机下部署多个实例时,为了防止出现多个子进程执行重写操作,建议做隔离控制,避免CPU和IO资源竞争。
Redis持久化
Redis支持RDB和AOF两种持久化机制,持久化功能有效地避免因进程退出造成的数据丢失问题,当下次重启时利用之前持久化的文件即可实现数据恢复。理解掌握持久化机制对于Redis运维非常重要。本章内容如下:
·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。
·其次对常见持久化问题进行分析定位和优化。
·最后结合Redis常见 的单机多实例部署场景进行优化。
5.1 RDB
RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。
5.1.1 触发机制
手动触发分别对应save和bgsave命令:
·save命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存比较大的实例会造成长时间阻塞,线上环境不建议使用。运行save命令对应
的Redis日志如下:
* DB saved on disk
·bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短。运行bgsave命令对应的Redis日志如下:
* Background saving started by pid 3151
* DB saved on disk
* RDB: 0 MB of memory used by copy-on-write
* Background saving terminated with success
显然bgsave命令是针对save阻塞问题做的优化。因此Redis内部所有的涉及RDB的操作都采用bgsave的方式,而save命令已经废弃。
除了执行命令手动触发之外,Redis内部还存在自动触发RDB的持久化机制,例如以下场景:
1)使用save相关配置,如“save m n”。表示m秒内数据集存在n次修改时,自动触发bgsave。
2)如果从节点执行全量复制操作,主节点自动执行bgsave生成RDB文件并发送给从节点,更多细节见6.3节介绍的复制原理。
3)执行debug reload命令重新加载Redis时,也会自动触发save操作。
4)默认情况下执行shutdown命令时,如果没有开启AOF持久化功能则自动执行bgsave。
5.1.2 流程说明
bgsave是主流的触发RDB持久化方式,下面根据图5-1了解它的运作流程。
1)执行bgsave命令,Redis父进程判断当前是否存在正在执行的子进程,如RDB/AOF子进程,如果存在bgsave命令直接返回。
2)父进程执行fork操作创建子进程,fork操作过程中父进程会阻塞,通过info stats命令查看latest_fork_usec选项,可以获取最近一个fork操作的耗时,单位为微秒。
3)父进程fork完成后,bgsave命令返回“Background saving started”信息并不再阻塞父进程,可以继续响应其他命令。
4)子进程创建RDB文件,根据父进程内存生成临时快照文件,完成后对原有文件进行原子替换。执行lastsave命令可以获取最后一次生成RDB的时间,对应info统计的rdb_last_save_time选项。
5)进程发送信号给父进程表示完成,父进程更新统计信息,具体见info Persistence下的rdb_*相关选项。
5.1.3 RDB文件的处理
保存:RDB文件保存在dir配置指定的目录下,文件名通过dbfilename配置指定。可以通过执行config set dir{newDir}和config setdbfilename{newFileName}运行期动态执行,当下次运行时RDB文件会保存到新目录。
运维提示
当遇到坏盘或磁盘写满等情况时,可以通过config set dir{newDir}在线修改文件路径到可用的磁盘路径,之后执行bgsave进行磁盘切换,同样适用于AOF持久化文件。
压缩:Redis默认采用LZF算法对生成的RDB文件做压缩处理,压缩后的文件远远小于内存大小,默认开启,可以通过参数config set rdbcompression{yes|no}动态修改。
运维提示
虽然压缩RDB会消耗CPU,但可大幅降低文件的体积,方便保存到硬盘或通过网络发送给从节点,因此线上建议开启。
校验:如果Redis加载损坏的RDB文件时拒绝启动,并打印如下日志:
# Short read or OOM loading DB. Unrecoverable error, aborting now.
这时可以使用Redis提供的redis-check-mp工具检测RDB文件并获取对应的错误报告。
5.1.4 RDB的优缺点
RDB的优点:
·RDB是一个紧凑压缩的二进制文件,代表Redis在某个时间点上的数据快照。非常适用于备份,全量复制等场景。比如每6小时执行bgsave备份,并把RDB文件拷贝到远程机器或者文件系统中(如hdfs),用于灾难恢复。
·Redis加载RDB恢复数据远远快于AOF的方式。
RDB的缺点:
·RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
·RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB版本,存在老版本Redis服务无法兼容新版RDB格式的问题。针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决。
5.2 AOF
AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中的命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式。理解掌握好AOF持久化机制对我们兼顾数据安全性和性能非常有帮助。
5.2.1 使用AOF
开启AOF功能需要设置配置:appendonly yes,默认不开启。AOF文件名通过appendfilename配置设置,默认文件名是appendonly.aof。保存路径同RDB持久化方式一致,通过dir配置指定。AOF的工作流程操作:命令写入(append)、文件同步(sync)、文件重写(rewrite)、重启加载(load),如图5-2所示。
1)所有的写入命令会追加到aof_buf(缓冲区)中。
2)AOF缓冲区根据对应的策略向硬盘做同步操作。
3)随着AOF文件越来越大,需要定期对AOF文件进行重写,达到压缩的目的。
4)当Redis服务器重启时,可以加载AOF文件进行数据恢复。了解AOF工作流程之后,下面针对每个步骤做详细介绍。
5.2.2 命令写入
AOF命令写入的内容直接是文本协议格式。例如set hello world这条命令,在AOF缓冲区会追加如下文本:*3\r\n$3\r\nset\r\n$5\r\nhello\r\n$5\r\nworld\r\n
Redis协议格式具体说明见4.1客户端协议小节,这里不再赘述,下面介
绍关于AOF的两个疑惑:
1)AOF为什么直接采用文本协议格式?可能的理由如下:
·文本协议具有很好的兼容性。
·开启AOF后,所有写入命令都包含追加操作,直接采用协议格式,避免了二次处理开销。
·文本协议具有可读性,方便直接修改和处理。
2)AOF为什么把命令追加到aof_buf中?Redis使用单线程响应命令,如果每次写AOF文件命令都直接追加到硬盘,那么性能完全取决于当前硬盘负载。先写入缓冲区aof_buf中,还有另一个好处Redis可以提供多种缓冲区同步硬盘的策略,在性能和安全性方面做出平衡。
5.2.3 文件同步
Redis提供了多种AOF缓冲区同步文件策略,由参数appendfsync控制,不同值的含义如表5-1所示。
表5-1 AOF缓冲区同步文件策略
系统调用write和fsync说明:
·write操作会触发延迟写(delayed write)机制。Linux在内核提供页缓冲区用来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依赖于系统调度机制,例如:缓冲区页空间写满或达到特定时间周期。同步文件之前,如果此时系统故障宕机,缓冲区内数据将丢失。
·fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞直到写入硬盘完成后返回,保证了数据持久化。除了write、fsync,Linux还提供了sync、fdatasync操作,具体API说明参
见:http://linux.die.net/man/2/write,http://linux.die.net/man/2/fsync,http://linux.die.net/man/2/sync
·配置为always时,每次写入都要同步AOF文件,在一般的SATA硬盘上,Redis只能支持大约几百TPS写入,显然跟Redis高性能特性背道而驰,不建议配置。
·配置为no,由于操作系统每次同步AOF文件的周期不可控,而且会加大每次同步硬盘的数据量,虽然提升了性能,但数据安全性无法保证。
·配置为everysec,是建议的同步策略,也是默认配置,做到兼顾性能和数据安全性。理论上只有在系统突然宕机的情况下丢失1秒的数据。(严格来说最多丢失1秒数据是不准确的,5.3节会做具体介绍到。)
5.2.4 重写机制
随着命令不断写入AOF,文件会越来越大,为了解决这个问题,Redis引入AOF重写机制压缩文件体积。AOF文件重写是把Redis进程内的数据转化为写命令同步到新AOF文件的过程。
重写后的AOF文件为什么可以变小?有如下原因:
1)进程内已经超时的数据不再写入文件。
2)旧的AOF文件含有无效命令,如del key1、hdel key2、srem keys、set
a111、set a222等。重写使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令。
3)多条写命令可以合并为一个,如:lpush list a、lpush list b、lpush list c可以转化为:lpush list a b c。为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset等类型操作,以64个元素为界拆分为多条。
AOF重写降低了文件占用空间,除此之外,另一个目的是:更小的AOF文件可以更快地被Redis加载。AOF重写过程可以手动触发和自动触发:
·手动触发:直接调用bgrewriteaof命令。
·自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数确定自动触发时机。
·auto-aof-rewrite-min-size:表示运行AOF重写时文件最小体积,默认为64MB。
·auto-aof-rewrite-percentage:代表当前AOF文件空间(aof_current_size)和上一次重写后AOF文件空间(aof_base_size)的比值。自动触发时机=aof_current_size>auto-aof-rewrite-min-size&&(aof_current_size-aof_base_size)/aof_base_size>=auto-aof-rewrite-percentage其中aof_current_size和aof_base_size可以在info Persistence统计信息中查看。当触发AOF重写时,内部做了哪些事呢?下面结合图5-3介绍它的运行流程。
图5-3 AOF重写运作流程
流程说明:
1)执行AOF重写请求。
如果当前进程正在执行AOF重写,请求不执行并返回如下响应:
ERR Background append only file rewriting already in progress
如果当前进程正在执行bgsave操作,重写命令延迟到bgsave完成之后再执行,返回如下响应:
Background append only file rewriting scheled
2)父进程执行fork创建子进程,开销等同于bgsave过程。
3.1)主进程fork操作完成后,继续响应其他命令。所有修改命令依然写入AOF缓冲区并根据appendfsync策略同步到硬盘,保证原有AOF机制正确性。
3.2)由于fork操作运用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然响应命令,Redis使用“AOF重写缓冲区”保存这部分新数据,防止新AOF文件生成期间丢失这部分数据。
4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。每次批量写入硬盘数据量由配置aof-rewrite-incremental-fsync控制,默认为32MB,防止单次刷盘数据过多造成硬盘阻塞。
5.1)新AOF文件写入完成后,子进程发送信号给父进程,父进程更新统计信息,具体见info persistence下的aof_*相关统计。
5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件。
5.3)使用新AOF文件替换老文件,完成AOF重写。
5.2.5 重启加载
AOF和RDB文件都可以用于服务器重启时的数据恢复。如图5-4所示,表示Redis持久化文件加载流程。
流程说明:
1)AOF持久化开启且存在AOF文件时,优先加载AOF文件,打印如下日志:
* DB loaded from append only file: 5.841 seconds
2)AOF关闭或者AOF文件不存在时,加载RDB文件,打印如下日志:
* DB loaded from disk: 5.586 seconds
3)加载AOF/RDB文件成功后,Redis启动成功。
4)AOF/RDB文件存在错误时,Redis启动失败并打印错误信息。
5.2.6 文件校验
加载损坏的AOF文件时会拒绝启动,并打印如下日志:
# Bad file format reading the append only file: make a backup of your AOF file,
then use ./redis-check-aof --fix <filename>
运维提示
对于错误格式的AOF文件,先进行备份,然后采用redis-check-aof--fix命令进行修复,修复后使用diff-u对比数据的差异,找出丢失的数据,有些可以人工修改补全。
AOF文件可能存在结尾不完整的情况,比如机器突然掉电导致AOF尾部文件命令写入不全。Redis为我们提供了aof-load-truncated配置来兼容这种情况,默认开启。加载AOF时,当遇到此问题时会忽略并继续启动,同时打印
如下警告日志:
# !!! Warning: short read while loading the AOF file !!!
# !!! Truncating the AOF at offset 397856725 !!!
# AOF loaded anyway because aof-load-truncated is enabled
5.3 问题定位与优化
Redis持久化功能一直是影响Redis性能的高发地,本节我们结合常见的持久化问题进行分析定位和优化。
5.3.1 fork操作
当Redis做RDB或AOF重写时,一个必不可少的操作就是执行fork操作创建子进程,对于大多数操作系统来说fork是个重量级错误。虽然fork创建的子进程不需要拷贝父进程的物理内存空间,但是会复制父进程的空间内存页表。例如对于10GB的Redis进程,需要复制大约20MB的内存页表,因此fork操作耗时跟进程总内存量息息相关,如果使用虚拟化技术,特别是Xen虚拟机,fork操作会更耗时。
fork耗时问题定位:对于高流量的Redis实例OPS可达5万以上,如果fork操作耗时在秒级别将拖Redis几万条命令执行,对线上应用延迟影响非常明显。正常情况下fork耗时应该是每GB消耗20毫秒左右。可以在info stats统计中查latest_fork_usec指标获取最近一次fork操作耗时,单位微秒。
如何改善fork操作的耗时:
1)优先使用物理机或者高效支持fork操作的虚拟化技术,避免使用Xen。
2)控制Redis实例最大可用内存,fork耗时跟内存量成正比,线上建议每个Redis实例内存控制在10GB以内。
3)合理配置Linux内存分配策略,避免物理内存不足导致fork失败,具体细节见12.1节“Linux配置优化”。
4)降低fork操作的频率,如适度放宽AOF自动触发时机,避免不必要的全量复制等。
5.3.2 子进程开销监控和优化
子进程负责AOF或者RDB文件的重写,它的运行过程主要涉及CPU、内存、硬盘三部分的消耗。
1.CPU
·CPU开销分析。子进程负责把进程内的数据分批写入文件,这个过程属于CPU密集操作,通常子进程对单核CPU利用率接近90%.
·CPU消耗优化。Redis是CPU密集型服务,不要做绑定单核CPU操作。由于子进程非常消耗CPU,会和父进程产生单核资源竞争。不要和其他CPU密集型服务部署在一起,造成CPU过度竞争。如果部署多个Redis实例,尽量保证同一时刻只有一个子进程执行重写工作,具体细节见5.4节多实例部署”。
2.内存
·内存消耗分析。子进程通过fork操作产生,占用内存大小等同于父进程,理论上需要两倍的内存来完成持久化操作,但Linux有写时复制机制(copy-on-write)。父子进程会共享相同的物理内存页,当父进程处理写请求时会把要修改的页创建副本,而子进程在fork操作过程*享整个父进程内存快照。
·内存消耗监控。RDB重写时,Redis日志输出容如下:
* Background saving started by pid 7692
* DB saved on disk
* RDB: 5 MB of memory used by copy-on-write
* Background saving terminated with success
如果重写过程中存在内存修改操作,父进程负责创建所修改内存页的副本,从日志中可以看出这部分内存消耗了5MB,可以等价认为RDB重写消耗了5MB的内存。
AOF重写时,Redis日志输出容如下:
* Background append only file rewriting started by pid 8937
* AOF rewrite child asks to stop sending diffs.
* Parent agreed to stop sending diffs. Finalizing AOF...
* Concatenating 0.00 MB of AOF diff received from parent.
* SYNC append only file rewrite performed
* AOF rewrite: 53 MB of memory used by copy-on-write
* Background AOF rewrite terminated with success
* Resial parent diff successfully flushed to the rewritten AOF (1.49 MB)
* Background AOF rewrite finished successfully
父进程维护页副本消耗同RDB重写过程类似,不同之处在于AOF重写需要AOF重写缓冲区,因此根据以上日志可以预估内存消耗为:53MB+1.49MB,也就是AOF重写时子进程消耗的内存量。
运维提示
编写shell脚本根据Redis日志可快速定位子进程重写期间内存过度消耗情况。
内存消耗优化:
1)同CPU优化一样,如果部署多个Redis实例,尽量保证同一时刻只有一个子进程在工作。
2)避免在大量写入时做子进程重写操作,这样将导致父进程维护大量页副本,造成内存消耗。Linux kernel在2.6.38内核增加了Transparent Huge Pages(THP),支持huge page(2MB)的页分配,默认开启。当开启时可以降低fork创建子进程的速度,但执行fork之后,如果开启THP,复制页单位从原来4KB变为2MB,会大幅增加重写期间父进程内存消耗。建议设置“sudo echo never>/sys/kernel/mm/transparent_hugepage/enabled”关闭THP。更多THP细节和配置见12.1Linux配置优化”。
3.硬盘
·硬盘开销分析。子进程主要职责是把AOF或者RDB文件写入硬盘持久化。势必造成硬盘写入压力。根据Redis重写AOF/RDB的数据量,结合系统工具如sar、iostat、iotop等,可分析出重写期间硬盘负载情况。·硬盘开销优化。优化方法如下:
a)不要和其他高硬盘负载的服务部署在一起。如:存储服务、消息队列服务等。
b)AOF重写时会消耗大量硬盘IO,可以开启配置no-appendfsync-on-rewrite,默认关闭。表示在AOF重写期间不做fsync操作。
c)当开启AOF功能的Redis用于高流量写入场景时,如果使用普通机械磁盘,写入吞吐一般在100MB/s左右,这时Redis实例的瓶颈主要在AOF同步硬盘上。
d)对于单机配置多个Redis实例的情况,可以配置不同实例分盘存储AOF文件,分摊硬盘写入压力。运维提示
配置no-appendfsync-on-rewrite=yes时,在极端情况下可能丢失整个AOF重写期间的数据,需要根据数据安全性决定是否配置。
5.3.3 AOF追加阻塞
当开启AOF持久化时,常用的同步硬盘的策略是everysec,用于平衡性能和数据安全性。对于这种方式,Redis使用另一条线程每秒执行fsync同步硬盘。当系统硬盘资源繁忙时,会造成Redis主线程阻塞,如图5-5所示。
阻塞流程分析:
1)主线程负责写入AOF缓冲区。
2)AOF线程负责每秒执行一次同步磁盘操作,并记录最近一次同步时间。
3)主线程负责对比上次AOF同步时间:
·如果距上次同步成功时间在2秒内,主线程直接返回。
·如果距上次同步成功时间超过2秒,主线程将会阻塞,直到同步操作完成。
通过对AOF阻塞流程可以发现两个问题:
1)everysec配置最多可能丢失2秒数据,不是1秒。
2)如果系统fsync缓慢,将会导致Redis主线程阻塞影响效率。
AOF阻塞问题定位:
1)发生AOF阻塞时,Redis输出如下日志,用于记录AOF fsync阻塞导致拖慢Redis服务的行为:
Asynchronous AOF fsync is taking too long (disk is busy). Writing the AOF buffer
without waiting for fsync to complete, this may slow down Redis
2)每当发生AOF追加阻塞事件发生时,在info Persistence统计中,aof_delayed_fsync指标会累加,查看这个指标方便定位AOF阻塞问题。
3)AOF同步最多允许2秒的延迟,当延迟发生时说明硬盘存在高负载问题,可以通过监控工具如iotop,定位消耗硬盘IO资源的进程。优化AOF追加阻塞问题主要是优化系统硬盘负载,优化方式见上一节。
5.4 多实例部署
Redis单线程架构导致无法充分利用CPU多核特性,通常的做法是在一台机器上部署多个Redis实例。当多个实例开启AOF重写后,彼此之间会产生对CPU和IO的竞争。本节主要介绍针对这种场景的分析和优化。上一节介绍了持久化相关的子进程开销。对于单机多Redis部署,如果同一时刻运行多个子进程,对当前系统影响将非常明显,因此需要采用一种措施,把子进程工作进行隔离。Redis在info Persistence中为我们提供了监控子进程运行状况的度量指标,如表5-2所示。
我们基于以上指标,可以通过外部程序轮询控制AOF重写操作的执行,整个过程如图5-6所示。
流程说明:
1)外部程序定时轮询监控机器(machine)上所有Redis实例。
2)对于开启AOF的实例,查看(aof_current_size-aof_base_size)/aof_base_size确认增长率。
3)当增长率超过特定阈值(如100%),执行bgrewriteaof命令手动触发当前实例的AOF重写。
4)运行期间循环检查aof_rewrite_in_progress和aof_current_rewrite_time_sec指标,直到AOF重写结束。
5)确认实例AOF重写完成后,再检查其他实例并重复2)~4)步操作。从而保证机器内每个Redis实例AOF重写串行化执行。
5.5 本章重点回顾
1)Redis提供了两种持久化方式:RDB和AOF。
2)RDB使用一次性生成内存快照的方式,产生的文件紧凑压缩比更高,因此读取RDB恢复速度更快。由于每次生成RDB开销较大,无法做到实时持久化,一般用于数据冷备和复制传输。
3)save命令会阻塞主线程不建议使用,bgsave命令通过fork操作创建子进程生成RDB避免阻塞。
4)AOF通过追加写命令到文件实现持久化,通过appendfsync参数可以控制实时/秒级持久化。因为需要不断追加写命令,所以AOF文件体积逐渐变大,需要定期执行重写操作来降低文件体积。
5)AOF重写可以通过auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数控制自动触发,也可以使用bgrewriteaof命令手动触发。
6)子进程执行期间使用copy-on-write机制与父进程共享内存,避免内存消耗翻倍。AOF重写期间还需要维护重写缓冲区,保存新的写入命令避免数据丢失。
7)持久化阻塞主线程场景有:fork阻塞和AOF追加阻塞。fork阻塞时间跟内存量和系统有关,AOF追加阻塞说明硬盘资源紧张。
8)单机下部署多个实例时,为了防止出现多个子进程执行重写操作,建议做隔离控制,避免CPU和IO资源竞争。
NoSQL数据库Redis几个认识误区
题外话说完,最近又研究了Redis。去年曾做过一个MemcacheDB, Tokyo Tyrant, Redis performance test,到目前为止,这个benchmark
前几天微博发生了一起大的系统故障,很多技术的朋友都比较关心,其中的原因不会超出James Hamilton在On Designing and Deploying Internet-Scale Service(1)概括的那几个范围,James第一条经验“Design for failure”是所有互联网架构成功的一个关键。互联网系统的工程理论其实非常简单,James paper中内容几乎称不上理论,而是多条实践经验分享,每个公司对这些经验的理解及执行力决定了架构成败。
题外话说完,最近又研究了Redis。去年曾做过一个MemcacheDB, Tokyo Tyrant, Redis performance test,到目前为止,这个benchmark结果依然有效。这1年我们经历了很多眼花缭乱的key value存储产品的,从Cassandra的淡出(Twitter暂停在主业务使用)到HBase的兴起(新的邮箱业务选用HBase(2)),当再回头再去看Redis,发现这个只有1万多行源代码的程序充满了神奇及大量未经挖掘的特性。Redis性能惊人,国内前十大网站的子产品估计用1台Redis就可以满足存储及Cache的需求。除了性能印象之外,业界其实普遍对Redis的认识存在一定误区。本文提出一些观点供大家探讨。
1. Redis是什么
这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存一些频繁访问的临时数据。Redis是REmote DIctionary Server的缩写,在Redis在官方网站的的副标题是A persistent key-value database with built-in net interface written in ANSI-C for Posix systems,这个定义偏向key value store。还有一些看法则认为Redis是一个memory database,因为它的高性能都是基于内存操作的基础。另外一些人则认为Redis是一个data structure server,因为Redis支持复杂的数据特性,比如List, Set等。对Redis的作用的不同解读决定了你对Redis的使用方式。
互联网数据目前基本使用两种方式来存储,关系数据库或者key value。但是这些互联网业务本身并不属于这两种数据类型,比如用户在社会化平台中的关系,它是一个list,如果要用关系数据库存储就需要转换成一种多行记录的形式,这种形式存在很多冗余数据,每一行需要存储一些重复信息。如果用key value存储则修改和删除比较麻烦,需要将全部数据读出再写入。Redis在内存中设计了各种数据类型,让业务能够高速原子的访问这些数据结构,并且不需要关心持久存储的问题,从架构上解决了前面两种存储需要走一些弯路的问题。
2. Redis不可能比Memcache快
很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。
Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。
CAS问题。CAS是Memcached中比较方便的一种防止竞争修改资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别(5)。
3. 单台Redis的存放数据必须比物理内存小
Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。
这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。
基于相同的考虑,Redis 2.0也增加了VM特性。让Redis数据容量突破了物理内存的。并实现了数据冷热分离。
4. Redis的VM实现是重复造轮子
Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。
作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block进程,也是导致Redis要自己实现VM原因之一。
5. 用get/set方式使用Redis
作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是最优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。
假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。
这就是为了节约内存,建议使用hashset而不是set/get的方式来使用Redis,详细方法见参考文献(7)。
6. 使用aof代替snapshot
Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。
其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。
小结
要想成功使用一种产品,我们需要深入了解它的特性。Redis性能突出,如果能够熟练的驾驭,对国内很多大型应用具有很大帮助。希望更多同行加入到Redis使用及代码研究行列。
几种nosql的浅谈
1、性能
都比较高,性能对我们来说应该都不是瓶颈。
总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 mongodb。
2、操作的便利性
memcache 数据结构单一。(key-value)
redis 丰富一些,数据操作方面,redis 更好一些,较少的网络 IO 次数,同时还提供 list,set,
hash 等数据结构的存储。
mongodb 支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。
3、内存空间的大小和数据量的大小
redis 在 2.0 版本后增加了自己的 VM 特性,突破物理内存的*;可以对 key value 设置过
期时间(类似 memcache)
memcache 可以修改最大可用内存,采用 LRU 算法。Memcached 代理软件 magent,比如建立
10 台 4G 的 Memcache 集群,就相当于有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 适合大数据量的存储,依赖操作系统 VM 做内存管理,吃内存也比较厉害,服务
不要和别的服务在一起。
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整
个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动 sharding,需要依赖程序设定一致 hash 机制。
一种替代方案是,不用 redis 本身的复制机制,采用自己做主动复制(多份存储),或者改成
增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache 本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的 hash 或者环
状的算法,解决单点故障引起的抖动问题。
mongoDB 支持 master-slave,replicaset(内部采用 paxos 选举算法,自动故障恢复),auto sharding 机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis 支持(快照、AOF):依赖快照进行持久化,aof 增强了可靠性的同时,对性能有所影
响
memcache 不支持,通常用在做缓存,提升性能;
MongoDB 从 1.8 版本开始采用 binlog 方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用 cas 保证一致性redis 事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB 不支持事务
7、数据分析
mongoDB 内置了数据分析的功能(maprece),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写
少,对于数据量比较大,可以采用 sharding)
MongoDB:主要解决海量数据的访问效率问题。
表格比较:
memcache redis 类型 内存数据库 内存数据库
数据类型 在定义 value 时就要固定数据类型 不需要
有字符串,链表,集 合和有序集合
虚拟内存 不支持 支持
过期策略 支持 支持
分布式 magent master-slave,一主一从或一主多从
存储数据安全 不支持 使用 save 存储到 mp.rdb 中
灾难恢复 不支持 append only file(aof)用于数据恢复
性能
1、类型——memcache 和 redis 都是将数据存放在内存,所以是内存数据库。当然,memcache 也可用于缓存其他东西,例如图片等等。
2、 数据类型——Memcache 在添加数据时就要指定数据的字节长度,而 redis 不需要。
3、 虚拟内存——当物理内存用完时,可以将一些很久没用到的 value 交换到磁盘。
4、 过期策略——memcache 在 set 时就指定,例如 set key1 0 0 8,即永不过期。Redis 可以通
过例如 expire 设定,例如 expire name 10。
5、 分布式——设定 memcache 集群,利用 magent 做一主多从;redis 可以做一主多从。都可
以一主一从。
6、 存储数据安全——memcache 断电就断了,数据没了;redis 可以定期 save 到磁盘。
7、 灾难恢复——memcache 同上,redis 丢了后可以通过 aof 恢复。
Memecache 端口 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 启动一个守护进程
-p 端口
-m 分配的内存是 M
-c 最大运行并发数-P memcache 的 pid
//0 压缩(是否 MEMCACHE_COMPRESSED) 30 秒失效时间
//delete 5 是 timeout
几种nosql的浅谈
1、性能
都比较高,性能对我们来说应该都不是瓶颈。
总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 mongodb。
2、操作的便利性
memcache 数据结构单一。(key-value)
redis 丰富一些,数据操作方面,redis 更好一些,较少的网络 IO 次数,同时还提供 list,set,
hash 等数据结构的存储。
mongodb 支持丰富的数据表达,索引,最类似关系型数据库,支持的查询语言非常丰富。
3、内存空间的大小和数据量的大小
redis 在 2.0 版本后增加了自己的 VM 特性,突破物理内存的*;可以对 key value 设置过
期时间(类似 memcache)
memcache 可以修改最大可用内存,采用 LRU 算法。Memcached 代理软件 magent,比如建立
10 台 4G 的 Memcache 集群,就相当于有了 40G。 magent -s 10.1.2.1 -s 10.1.2.2:11211 -b
10.1.2.3:14000 mongoDB 适合大数据量的存储,依赖操作系统 VM 做内存管理,吃内存也比较厉害,服务
不要和别的服务在一起。
4、可用性(单点问题)
对于单点问题,
redis,依赖客户端来实现分布式读写;主从复制时,每次从节点重新连接主节点都要依赖整
个快照,无增量复制,因性能和效率问题,
所以单点问题比较复杂;不支持自动 sharding,需要依赖程序设定一致 hash 机制。
一种替代方案是,不用 redis 本身的复制机制,采用自己做主动复制(多份存储),或者改成
增量复制的方式(需要自己实现),一致性问题和性能的权衡
Memcache 本身没有数据冗余机制,也没必要;对于故障预防,采用依赖成熟的 hash 或者环
状的算法,解决单点故障引起的抖动问题。
mongoDB 支持 master-slave,replicaset(内部采用 paxos 选举算法,自动故障恢复),auto sharding 机制,对客户端屏蔽了故障转移和切分机制。
5、可靠性(持久化)
对于数据持久化和数据恢复,
redis 支持(快照、AOF):依赖快照进行持久化,aof 增强了可靠性的同时,对性能有所影
响
memcache 不支持,通常用在做缓存,提升性能;
MongoDB 从 1.8 版本开始采用 binlog 方式支持持久化的可靠性
6、数据一致性(事务支持)
Memcache 在并发场景下,用 cas 保证一致性redis 事务支持比较弱,只能保证事务中的每个操作连续执行
mongoDB 不支持事务
7、数据分析
mongoDB 内置了数据分析的功能(maprece),其他不支持
8、应用场景
redis:数据量较小的更性能操作和运算上
memcache:用于在动态系统中减少数据库负载,提升性能;做缓存,提高性能(适合读多写
少,对于数据量比较大,可以采用 sharding)
MongoDB:主要解决海量数据的访问效率问题。
表格比较:
memcache redis 类型 内存数据库 内存数据库
数据类型 在定义 value 时就要固定数据类型 不需要
有字符串,链表,集 合和有序集合
虚拟内存 不支持 支持
过期策略 支持 支持
分布式 magent master-slave,一主一从或一主多从
存储数据安全 不支持 使用 save 存储到 mp.rdb 中
灾难恢复 不支持 append only file(aof)用于数据恢复
性能
1、类型——memcache 和 redis 都是将数据存放在内存,所以是内存数据库。当然,memcache 也可用于缓存其他东西,例如图片等等。
2、 数据类型——Memcache 在添加数据时就要指定数据的字节长度,而 redis 不需要。
3、 虚拟内存——当物理内存用完时,可以将一些很久没用到的 value 交换到磁盘。
4、 过期策略——memcache 在 set 时就指定,例如 set key1 0 0 8,即永不过期。Redis 可以通
过例如 expire 设定,例如 expire name 10。
5、 分布式——设定 memcache 集群,利用 magent 做一主多从;redis 可以做一主多从。都可
以一主一从。
6、 存储数据安全——memcache 断电就断了,数据没了;redis 可以定期 save 到磁盘。
7、 灾难恢复——memcache 同上,redis 丢了后可以通过 aof 恢复。
Memecache 端口 11211
yum -y install memcached
yum -y install php-pecl-memcache
/etc/init.d/memcached start memcached -d -p 11211 -u memcached -m 64 -c 1024 -P /var/run/memcached/memcached.pid
-d 启动一个守护进程
-p 端口
-m 分配的内存是 M
-c 最大运行并发数-P memcache 的 pid
//0 压缩(是否 MEMCACHE_COMPRESSED) 30 秒失效时间
//delete 5 是 timeout
redis有哪些存储模式
Redis支持多种数据结构和存储模式,其中包括:
字符串(String):字符串类型是Redis最基本的数据类型,它可以包含任何数据,比如文本、整数或二进制数据等。
哈希(Hash):哈希类型存储的是键值对集合,这些键值对可以是字符串类型的,也可以是数字类型的。
列表(List):列表类型是一个有序的字符串列表,可以添加、删除和插入元素。
集合(Set):集合类型存储的是一组唯一的无序元素,支持添加、删除和查询操作。
有序集合(Sorted Set):有序集合类型存储的是一组有序的元素,每个元素都有一个分数(score),可以根据分数进行排序。
此外,Redis还支持多种不同的持久化模式,包括:
RDB持久化模式:在指定时间间隔内将内存中的数据保存到磁盘中。
AOF持久化模式:将所有对Redis数据库的写操作记录下来,可以通过回放这些日志文件来恢复数据库。
混合持久化模式:同时使用RDB和AOF两种持久化模式,以保证数据的可靠性和恢复速度。
redis有哪些存储模式
Redis支持多种数据结构和存储模式,其中包括:
字符串(String):字符串类型是Redis最基本的数据类型,它可以包含任何数据,比如文本、整数或二进制数据等。
哈希(Hash):哈希类型存储的是键值对集合,这些键值对可以是字符串类型的,也可以是数字类型的。
列表(List):列表类型是一个有序的字符串列表,可以添加、删除和插入元素。
集合(Set):集合类型存储的是一组唯一的无序元素,支持添加、删除和查询操作。
有序集合(Sorted Set):有序集合类型存储的是一组有序的元素,每个元素都有一个分数(score),可以根据分数进行排序。
此外,Redis还支持多种不同的持久化模式,包括:
RDB持久化模式:在指定时间间隔内将内存中的数据保存到磁盘中。
AOF持久化模式:将所有对Redis数据库的写操作记录下来,可以通过回放这些日志文件来恢复数据库。
混合持久化模式:同时使用RDB和AOF两种持久化模式,以保证数据的可靠性和恢复速度。
redis和memcached的区别
Redis的作者Salvatore Sanfilippo曾经对这两种基于内存的数据存储系统进行过比较:
1、Redis支持服务器端的数据操作:Redis相比Memcached来说,拥有更多的数据结构和并支持更丰富的数据操作,通常在Memcached里,你需要将数据拿到客户端来进行类似的修改再set回去。这大大增加了网络IO的次数和数据体积。在Redis中,这些复杂的操作通常和一般的GET/SET一样高效。所以,如果需要缓存能够支持更复杂的结构和操作,那么Redis会是不错的选择。
2、内存使用效率对比:使用简单的key-value存储的话,Memcached的内存利用率更高,而如果Redis采用hash结构来做key-value存储,由于其组合式的压缩,其内存利用率会高于Memcached。
3、性能对比:由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高。而在100k以上的数据中,Memcached性能要高于Redis,虽然Redis最近也在存储大数据的性能上进行优化,但是比起Memcached,还是稍有逊色。
具体为什么会出现上面的结论,以下为收集到的资料:
1、数据类型支持不同
与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多。最为常用的数据类型主要由五种:String、Hash、List、Set和Sorted Set。Redis内部使用一个redisObject对象来表示所有的key和value。redisObject最主要的信息如图所示:
type代表一个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式,比如:type=string代表value存储的是一个普通字符串,那么对应的encoding可以是raw或者是int,如果是int则代表实际redis内部是按数值型类存储和表示这个字符串的,当然前提是这个字符串本身可以用数值表示,比如:”123″ “456”这样的字符串。只有打开了Redis的虚拟内存功能,vm字段字段才会真正的分配内存,该功能默认是关闭状态的。
1)String
常用命令:set/get/decr/incr/mget等;
应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类;
实现方式:String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。
2)Hash
常用命令:hget/hset/hgetall等
应用场景:我们要存储一个用户信息对象数据,其中包括用户ID、用户姓名、年龄和生日,通过用户ID我们希望获取该用户的姓名或者年龄或者生日;
实现方式:Redis的Hash实际是内部存储的Value为一个HashMap,并提供了直接存取这个Map成员的接口。如图所示,Key是用户ID, value是一个Map。这个Map的key是成员的属性名,value是属性值。这样对数据的修改和存取都可以直接通过其内部Map的Key(Redis里称内部Map的key为field), 也就是通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据。当前HashMap的实现有两种方式:当HashMap的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,这时对应的value的redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。
3)List
常用命令:lpush/rpush/lpop/rpop/lrange等;
应用场景:Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如的关注列表,粉丝列表等都可以用Redis的list结构来实现;
实现方式:Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。
4)Set
常用命令:sadd/spop/smembers/sunion等;
应用场景:Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的;
实现方式:set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。
5)Sorted Set
常用命令:zadd/zrange/zrem/zcard等;
应用场景:Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。
实现方式:Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。
2、内存管理机制不同
在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个操作,直到子线程完成swap操作后才可以进行修改。当从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。
对于像Redis和Memcached这种基于内存的数据库系统来说,内存管理的效率高低是影响系统性能的关键因素。传统C语言中的malloc/free函数是最常用的分配和释放内存的方法,但是这种方法存在着很大的缺陷:首先,对于开发人员来说不匹配的malloc和free容易造成内存泄露;其次频繁调用会造成大量内存碎片无法回收重新利用,降低内存利用率;最后作为系统调用,其系统开销远远大于一般函数调用。所以,为了提高内存的管理效率,高效的内存管理方案都不会直接使用malloc/free调用。Redis和Memcached均使用了自身设计的内存管理机制,但是实现方法存在很大的差异,下面将会对两者的内存管理机制分别进行介绍。
Memcached默认使用Slab Allocation机制管理内存,其主要思想是按照预先规定的大小,将分配的内存分割成特定长度的块以存储相应长度的key-value数据记录,以完全解决内存碎片问题。Slab Allocation机制只为存储外部数据而设计,也就是说所有的key-value数据都存储在Slab Allocation系统里,而Memcached的其它内存请求则通过普通的malloc/free来申请,因为这些请求的数量和频率决定了它们不会对整个系统的性能造成影响Slab Allocation的原理相当简单。 如图所示,它首先从操作系统申请一大块内存,并将其分割成各种尺寸的块Chunk,并把尺寸相同的块分成组Slab Class。其中,Chunk就是用来存储key-value数据的最小单位。每个Slab Class的大小,可以在Memcached启动的时候通过制定Growth Factor来控制。假定图中Growth Factor的取值为1.25,如果第一组Chunk的大小为88个字节,第二组Chunk的大小就为112个字节,依此类推。
当Memcached接收到客户端发送过来的数据时首先会根据收到数据的大小选择一个最合适的Slab Class,然后通过查询Memcached保存着的该Slab Class内空闲Chunk的列表就可以找到一个可用于存储数据的Chunk。当一条数据库过期或者丢弃时,该记录所占用的Chunk就可以回收,重新添加到空闲列表中。从以上过程我们可以看出Memcached的内存管理制效率高,而且不会造成内存碎片,但是它最大的缺点就是会导致空间浪费。因为每个Chunk都分配了特定长度的内存空间,所以变长数据无法充分利用这些空间。如图 所示,将100个字节的数据缓存到128个字节的Chunk中,剩余的28个字节就浪费掉了。
Redis的内存管理主要通过源码中zmalloc.h和zmalloc.c两个文件来实现的。Redis为了方便内存的管理,在分配一块内存之后,会将这块内存的大小存入内存块的头部。如图所示,real_ptr是redis调用malloc后返回的指针。redis将内存块的大小size存入头部,size所占据的内存大小是已知的,为size_t类型的长度,然后返回ret_ptr。当需要释放内存的时候,ret_ptr被传给内存管理程序。通过ret_ptr,程序可以很容易的算出real_ptr的值,然后将real_ptr传给free释放内存。
Redis通过定义一个数组来记录所有的内存分配情况,这个数组的长度为ZMALLOC_MAX_ALLOC_STAT。数组的每一个元素代表当前程序所分配的内存块的个数,且内存块的大小为该元素的下标。在源码中,这个数组为zmalloc_allocations。zmalloc_allocations[16]代表已经分配的长度为16bytes的内存块的个数。zmalloc.c中有一个静态变量used_memory用来记录当前分配的内存总大小。所以,总的来看,Redis采用的是包装的mallc/free,相较于Memcached的内存管理方法来说,要简单很多。
3、数据持久化支持
Redis虽然是基于内存的存储系统,但是它本身是支持内存数据的持久化的,而且提供两种主要的持久化策略:RDB快照和AOF日志。而memcached是不支持数据持久化操作的。
1)RDB快照
Redis支持将当前数据的快照存成一个数据文件的持久化机制,即RDB快照。但是一个持续写入的数据库如何生成快照呢?Redis借助了fork命令的copy on write机制。在生成快照时,将当前进程fork出一个子进程,然后在子进程中循环所有的数据,将数据写成为RDB文件。我们可以通过Redis的save指令来配置RDB快照生成的时机,比如配置10分钟就生成快照,也可以配置有1000次写入就生成快照,也可以多个规则一起实施。这些规则的定义就在Redis的配置文件中,你也可以通过Redis的CONFIG SET命令在Redis运行时设置规则,不需要重启Redis。
Redis的RDB文件不会坏掉,因为其写操作是在一个新进程中进行的,当生成一个新的RDB文件时,Redis生成的子进程会先将数据写到一个临时文件中,然后通过原子性rename系统调用将临时文件重命名为RDB文件,这样在任何时候出现故障,Redis的RDB文件都总是可用的。同时,Redis的RDB文件也是Redis主从同步内部实现中的一环。RDB有他的不足,就是一旦数据库出现问题,那么我们的RDB文件中保存的数据并不是全新的,从上次RDB文件生成到Redis停机这段时间的数据全部丢掉了。在某些业务下,这是可以忍受的。
2)AOF日志
AOF日志的全称是append only file,它是一个追加写入的日志文件。与一般数据库的binlog不同的是,AOF文件是可识别的纯文本,它的内容就是一个个的Redis标准命令。只有那些会导致数据发生修改的命令才会追加到AOF文件。每一条修改数据的命令都生成一条日志,AOF文件会越来越大,所以Redis又提供了一个功能,叫做AOF rewrite。其功能就是重新生成一份AOF文件,新的AOF文件中一条记录的操作只会有一次,而不像一份老文件那样,可能记录了对同一个值的多次操作。其生成过程和RDB类似,也是fork一个进程,直接遍历数据,写入新的AOF临时文件。在写入新文件的过程中,所有的写操作日志还是会写到原来老的AOF文件中,同时还会记录在内存缓冲区中。当重完操作完成后,会将所有缓冲区中的日志一次性写入到临时文件中。然后调用原子性的rename命令用新的AOF文件取代老的AOF文件。
AOF是一个写文件操作,其目的是将操作日志写到磁盘上,所以它也同样会遇到我们上面说的写操作的流程。在Redis中对AOF调用write写入后,通过appendfsync选项来控制调用fsync将其写到磁盘上的时间,下面appendfsync的三个设置项,安全强度逐渐变强。
appendfsync no 当设置appendfsync为no的时候,Redis不会主动调用fsync去将AOF日志内容同步到磁盘,所以这一切就完全依赖于操作系统的调试了。对大多数Linux操作系统,是每30秒进行一次fsync,将缓冲区中的数据写到磁盘上。
appendfsync everysec 当设置appendfsync为everysec的时候,Redis会默认每隔一秒进行一次fsync调用,将缓冲区中的数据写到磁盘。但是当这一次的fsync调用时长超过1秒时。Redis会采取延迟fsync的策略,再等一秒钟。也就是在两秒后再进行fsync,这一次的fsync就不管会执行多长时间都会进行。这时候由于在fsync时文件描述符会被阻塞,所以当前的写操作就会阻塞。所以结论就是,在绝大多数情况下,Redis会每隔一秒进行一次fsync。在最坏的情况下,两秒钟会进行一次fsync操作。这一操作在大多数数据库系统中被称为group commit,就是组合多次写操作的数据,一次性将日志写到磁盘。
appednfsync always 当设置appendfsync为always时,每一次写操作都会调用一次fsync,这时数据是最安全的,当然,由于每次都会执行fsync,所以其性能也会受到影响。
对于一般性的业务需求,建议使用RDB的方式进行持久化,原因是RDB的开销并相比AOF日志要低很多,对于那些无法忍数据丢失的应用,建议使用AOF日志。
4、集群管理的不同
Memcached是全内存的数据缓冲系统,Redis虽然支持数据的持久化,但是全内存毕竟才是其高性能的本质。作为基于内存的存储系统来说,机器物理内存的大小就是系统能够容纳的最大数据量。如果需要处理的数据量超过了单台机器的物理内存大小,就需要构建分布式集群来扩展存储能力。
Memcached本身并不支持分布式,因此只能在客户端通过像一致性哈希这样的分布式算法来实现Memcached的分布式存储。下图给出了Memcached的分布式存储实现架构。当客户端向Memcached集群发送数据之前,首先会通过内置的分布式算法计算出该条数据的目标节点,然后数据会直接发送到该节点上存储。但客户端查询数据时,同样要计算出查询数据所在的节点,然后直接向该节点发送查询请求以获取数据。
相较于Memcached只能采用客户端实现分布式存储,Redis更偏向于在服务器端构建分布式存储。最新版本的Redis已经支持了分布式存储功能。Redis Cluster是一个实现了分布式且允许单点故障的Redis高级版本,它没有中心节点,具有线性可伸缩的功能。下图给出Redis Cluster的分布式存储架构,其中节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信。在数据的放置策略上,Redis Cluster将整个key的数值域分成4096个哈希槽,每个节点上可以存储一个或多个哈希槽,也就是说当前Redis Cluster支持的最大节点数就是4096。Redis Cluster使用的分布式算法也很简单:crc16( key ) % HASH_SLOTS_NUMBER。
为了保证单点故障下的数据可用性,Redis Cluster引入了Master节点和Slave节点。在Redis Cluster中,每个Master节点都会有对应的两个用于冗余的Slave节点。这样在整个集群中,任意两个节点的宕机都不会导致数据的不可用。当Master节点退出后,集群会自动选择一个Slave节点成为新的Master节点。
java web开发缓存方案,ehcache和redis哪个更好
java web开发缓存方案,ehcache和redis各有优劣势,对比如下:
1、适合使用ehcache的场景:
选用Ehcache作为数据存储服务器,Ehcache也是基于内存存储,支持定时持久化功能,非常适合存储像计数器这种小数据类型。处理Http请求使用Tomcat容器,结构图如下:
实现原理:处理逻辑采用一个servlet实现,并且在这个servlet中通过一致性Hash从Ehcache中获取计数器值。
2、高并发并且对实时性要求高的场合下使用redis
redis
redis是在memcache之后编写的,大家经常把这两者做比较,如果说它是个key-value store 的话但是它具有丰富的数据类型,我想暂时把它叫做缓存数据流中心,就像现在物流中心那样,order、package、store、classification、distribute、end。现在还很流行的LAMP PHP架构 不知道和 redis+mysql 或者 redis + mongodb的性能比较(听群里的人说mongodb分片不稳定)。
先说说reidis的特性
1. 支持持久化
redis的本地持久化支持两种方式:RDB和AOF。RDB 在redis.conf配置文件里配置持久化触发器,AOF指的是redis没增加一条记录都会保存到持久化文件中(保存的是这条记录的生成命令),如果不是用redis做DB用的话还会不要开AOF ,数据太庞大了,重启恢复的时候非常麻烦。
2.丰富的数据类型
redis 支持 String 、Lists、sets、sorted sets、hashes 多种数据类型,新浪微博会使用redis做nosql主要也是它具有这些类型,时间排序、职能排序、我的微博、发给我的这些功能List 和 sorted set 的强大操作功能息息相关。
3.高性能
这点跟memcache很想象,内存操作的级别是毫秒级的比硬盘操作秒级操作自然高效不少,较少了磁头寻道、数据读取、页面交换这些高开销的操作!这也是NOSQL冒出来的原因吧,应该是高性能
是基于RDBMS的衍生产品,虽然RDBMS也具有缓存结构,但是始终在app层面不是我们想要的那么操控的。
4.replication
redis提供主从复制方案,跟mysql一样增量复制而且复制的实现都很相似,这个复制跟AOF有点类似复制的是新增记录命令,主库新增记录将新增脚本发送给从库,从库根据脚本生成记录,这个过程非常快,就看网络了,一般主从都是在同一个局域网,所以可以说redis的主从近似及时同步,同事它还支持一主多从,动态添加从库,从库数量没有。 主从库搭建,我觉得还是采用网状模式,如果使用链式(master-slave-slave-slave-slave·····)如果第一个slave出现宕机重启,首先从master 接收 数据恢复脚本,这个是阻塞的,如果主库数据几TB的情况恢复过程得花上一段时间,在这个过程中其他的slave就无法和主库同步了。
5.更新快
这点好像从我接触到redis到目前为止 已经发了大版本就4个,小版本没算过。redis作者是个非常积极的人,无论是邮件提问还是论坛发帖,他都能及时耐心的为你解答,维护度很高。有人维护的话,让我们用的也省心和放心。目前作者对redis 的主导开发方向是redis的集群方向。