数形结合在高中数学解题中的应用
提要:数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
关键词:数形结合;“以形助数,以数解形”
引言:数学的研究对象是现实世界的空间形式和数量关系。数和形是数学中最基本的两大概念,是整个数学发展进程中的两大柱石,也是中学数学研究的主要对象。为了解决中学数学某些问题的需要,有时,有些数量比较抽象,有些图形比较抽象,为了更容易认清问题的本质,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,揭示其几何意义,而形的问题借助数去思考,分析其代数含义,使数量关系和空间形式巧妙机智地结合越来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察.这种处理数学问题的方法,称之为数形结合的思想方法.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
下面我们具体来谈谈如何充分利用数和形的关系去解决常见数学问题。
一、运用数形结合思想解题的三种类型及思维方法:
①“由形化数”:就是借助所给的图形,仔细观察研究,揭示出图形中蕴含的数量关系,反映几何图形内在的属性.
②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,揭示出数与式的本质特征.
③“数形转换”:就是根据“数”与“形”既对立,又统一的特性,观察图形的的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观及揭示隐含的数量关系.
二、典例剖析
三、总结提炼
1.数形结合,数形转化常从一下几个方面:
(1)集合的运算及文氏图
(2)函数图象,导数的几何意义
(3)解析几何中方程的曲线
(4)数形转化,以形助数的还有:数轴、函数图象、单位圆、三角函数线或数式的结构特征等;
其中,函数的图像、方程的曲线、集合的文氏图或数轴表示等,是“以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。
2.取值范围,最值问题,方程不等式解的讨论,有解与恒成立问题等等,许多问题还可以通过换元转化为具有明显几何意义的问题,借助图形求解。
3.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。用数形结合思想解题时画图不能太草.要会用特殊点来确定图形间相互位置,会利用已知变量的范围来确定图形的多少.
总之,数形结合思想是解答数学试题的的一种常用方法与技巧,特别是在解决选择、填空题是发挥着奇特功效,复习中要以熟练技能、方法为目标,加强这方面的训练,以提高解题能力和速度。
参考文献:
[1]《中学数学研究》2001年1月.
[2]《数理报》第37期2005.3.15.
因篇幅问题不能全部显示,请点此查看更多更全内容