您的当前位置:首页正文

中考数学正方形中的十字架

来源:帮我找美食网


【正方形内的十字架结构】

1、在正方形ABCD中,BN⊥AM,则常见的结论有哪些?

2、在正方形ABCD中,E、F、G、H分别为AB、CD、BC、AD边上的点,若EF⊥GH,上述结论是否仍然成立?

当然是仍然成立的,所以大体上思路是“从垂直可利用全等推导出相等” 【思考】从相等是否可推导出垂直?

3、在正方形ABCD中,E、F、G、H分别为AB、CD、BC、AD边上的点,若EF=GH,则EF与GH是否垂直,若不是,请画出反例.

如图,垂直只是相等时的一种情况,另一种,只需使得AH’=DH,BG’=CG’即可作出HG=H’G’

利用上述结论,做题可就方便多了!

例题1、如图,将边长为4的正方形纸片ABCD折叠,使得点A落在CD的中点E处,折痕为FG,点F在AD边,求折痕FG的长;

【解析】

连接AE,由轴对称的性质可知,AE⊥FG(应该是FG垂直平分AE) 这样就可以直接用上面的结论啦! 所以由垂直得到相等,所以FG=AE=

【十字结构在矩形中】

【思考】既然正方形内可出现垂直,那么矩形内出现垂直会有什么结论呢?

1、如图,在矩形ABCD中,AB=m,AD=n,在AD上有一点E,若CE⊥BD,则CE和BD之间有什么数量关系?

这里面基本型较多,有相似里的直角母子型,又有A形相似,但是为了延续上面的探究

我们要讲的模型是△CDE∽△BCD,证明较简单,不证了,记住这个结论所以即CE和BD之比等于矩形邻边之比

2、如图1,一般情况,在矩形ABCD中,E、F、G、H分别为AD、BC、AB、CD边上的点,当EF⊥GH时,有的结论,证明方法如图2,证明△FME∽GNH即可

看到上面加粗的字了吗?这个点的所在边为什么要确定?

因为言五君发现,仅仅使得EF⊥GH,会出现下图情况,此时仍有相似,但不再成立

例题1、如图,已知直线落在点D上,当反比例函数

与x轴、y轴分别交于B、A两点,将△AOB沿着AB翻折,使点O经过点D时,求k的值.

【解析】

求出点D的坐标就好啦!

这个题学生不会做,主要是图不完整,太空啦! 所以把它围成一个矩形就好啦!(如图)

发现连接OD后,有OD⊥AB(发现没有,矩形内部垂直模型出来了!)

【练习】

如图把边长为AB=6,BC=8的矩形ABCD对折,使点B和D重合,求折痕MN的长.

请在20秒内快速求出此题答案

答案:

【十字结构在直角三角形中】

我们知道直角三角形是可以看成是连接矩形对角线后分成的图形

所以矩形的结论可沿用至直角三角形内

例题1、在Rt△ACB中,AC=4,BC=3,点D为AC上一点,连接BD,E为AB上一点,CE⊥BD,当AD=CD时,求AE的长;

【解析】

如图,补成矩形ACBH,延长CE交AH于点G

【练习】

1、如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D为BC边上的中点,BE⊥AD于点E,延长BE交AC于点F,则AF:FC的值为___________.

答案:2

【十字结构在其他四边形中】

1、(2017届滨湖区期中)如图,把边长为AB=点B和D重合,求折痕MN的长.

、BC=4且∠B=45°的平行四边形ABCD对折,使

【解析】 看着不熟悉吗?

怎么转换为熟悉的模型呢? 看下面,补成矩形不就好了!

后面的过程基本就和前面讲过的一样咯!

2、(2013·武汉中考改编)如图,若BA=BC=6,DA=DC=8,∠BAD=90°.DE⊥CF,请求出DE:CF的值.

【解析】

咋一看,又是个不规则的图形

再仔细看一下条件,发现其实是个轴对称的图形

再利用一下条件,可算出BD=10,发现△BCD也是个直角三角形 要求DE与CF的比值,仍然往我们熟悉的模型上靠拢 将这个图形补成矩形

【课后习题】

因篇幅问题不能全部显示,请点此查看更多更全内容

Top