InteraktiveVisualisierung
(WS06/07)
Two-LevelVolumeRendering
Westf¨alischeWilhelms-Universit¨atM¨unsterFachbereichMathematikundInformatik
Institutf¨urInformatik
vorgelegtvon
KayHenningBrodersen
(Kay.Brodersen@gmx.de,Matrikelnummer308603)
am12.01.2007
CONTENTSCONTENTS
Contents
1Introduction
1.1TheChallengeof3DVisualization................1.2CommonRequirementsinVisualization.............2352RecentResearch
2.1VisualizationMethods......................2.2VisualizationParameters.....................3VolumeRenderingTechniques3.1DirectVolumeRendering...
..................3.1.1Method..........................3.1.2Discussion.........................3.2Maximum-IntensityProjection
..................3.2.1Method..........................3.2.2Discussion.......
..................
4Two-LevelVolumeRendering4.1Motivation.............................4.2RenderingModel.........................4.3Implementation..........................5Applications5.1MedicalDataVisualization....................5.2DynamicalSystemVisualization.................6Discussion
–1–
7789101014151516
1717181924242525
1INTRODUCTION
1Introduction
Humanshavealwaysintuitivelymadeuseoftheirgenuinementalcapabil-ities.Devisingaconclusionfromnoisyinformation,recognizingapatternfromloosedata,revealingahiddenstructurewherechaosseemstoreign—inmanyareas,eventhemostrecenttechnologyhasbyfarnotreachedthecomputationalpowerofhumancognition.
Theinformationconcernedwithareal-worldproblemofoneofthekindsoutlinedaboveismostlyvisualinnature[Udu00].Thus,visualizingdatawhereitisnon-visualinthefirstplacecouldextendtheuseofhumancog-nitivepotential.
TheGoalofVisualizationThegoalofvisualizationistotranslateab-stractquantitativedataintoavisualsensationsoastoenablethehumanmindtogaininsightintotheunderlyingsystemthedatahasbeentakenfrom.Infact,suitablevisualizationmethodsopenupawholerangeofapplicationsinscienceandengineering.ThisessayreviewsthefundamentalprinciplesofvisualizationandeventuallyfocusesonanextensionrecentlyproposedbyHauseretal.knownastwo-levelvolumerendering[HMBG01].
Visualizationmustbeunderstoodasapartofimagingwhosepurposeitistoyieldqualitativeorquantitativeinformationabouttheobjectsystemunderstudy.Itcanbethoughtofascomprisingfoursub-processes[Udu00]:1.Preprocessingtakesinasetofobjects,anobjectsystem,andextractsvolumesofinterest,appliessegmentation,interpolation,filteringandmasking.2.Visualizationistheprocessofproducingarenditionfromtheprepro-cesseddatasuchthatthestructureorthedynamicsoftheunderlyingobjectsystemcanbestudied.3.Manipulationallowsforvirtualmodificationoftheobjectsthathavebeenvisualizedbycuttingaway,separating,movingoranimatingcer-tainpartsofthem.4.Analysis,finally,isusedtoquantifycertainmorphologicalorfunctionalinformationabouttheobjectsunderconsideration.Thisessayfocusesonthevisualizationaspectofimaging.However,sincethefourprocessesareofteninterleavedandrarelyappliedinstrictsequentialorder,someaspectsofprocessesotherthanvisualizationinitsstrictestsense,suchassegmentationoranalysis,willbetoucheduponaswell.
–2–
1.1TheChallengeof3DVisualization1INTRODUCTION
TheproblemofdimensionalityAnykindofvisualizationrequiresaviewingmedium,andeverysuchmediumischaracterizedbythenumberofdimensionsitfacilitates[Udu00].Acomputerscreenisaflexible,low-cost2Dviewingmediumusedubiquitously.Holographypromotesa3Dimpression,butismuchmorecostlyanddoesnotallowforinteraction.Ahead-mounteddisplayisapairoftinyscreens,mountedinfrontofone’seyes,thatfacilitatesstereoscopicviewing,butagainismuchmoreexpensivethanasinglemonitor.Thestandardcomputerscreenremainsthemostpervasiveviewingmediumand,inthesequel,allconsiderationshallberestrictedtoitstwodimensions.Conventionalvisualizationhasbeentheprocessofrenderinga2Ddatasetontoa2Dscreen.Butoftendataistobeconsideredwithmorethantwodimensions.Forinstance,onemightwanttoinquireintoavolumeofdata(3D),orevenstudythechangeofsuchavolumeovertime(4D).
A2Dviewingmediumcannotvisualizeadatasetofsuchhigherdimen-sionality.Infact,evenifoneweretousea3Dviewingmediumsuchasahead-mounteddisplay,onewouldberestrictedtostereoscopicviewingandcouldnotgraspallofagivenvolumeatonce.
Consequently,visualizationtechniques,withtheirtechnicaltaskbeingthegenerationof2Drenditions,needtomakeuseofauxiliarycues,suchastransparency,shadowingormotionparallax,inordertoconveyadatasetofhigherdimensionality.
StructureofthisessayThisessaydiscussesarecentlyproposedapproachto3Dvisualizationcalledtwo-levelvolumerendering.Giventhelimitationsandflawsofconventionallycompetingrenderingtechniques,two-levelvolumerenderingfusestworenderingapproachesinordertoproducerenditionsthatcombinetheadvantagesofeachofthem.
Inordertounderstandthereasoningbehindtwo-levelvolumerendering,thefollowingintroductorysubsectionsoutlinethechallengeof3Dvisualiza-tionanditsmainrequirements.Insection2,aselectionofrecentsuggestionsfortacklingtypicalproblemsinvisualizationispresented.Section3looksindetailatthetwovolumerenderingtechniquesthatformthebasisoftwo-levelvolumerendering,anddiscussestheirrespectivestrengthsandweaknesses.Asanovelapproachtocombiningthesetechniques,thecoreoftwo-levelvol-umerenderingitselfisdescribedinsection4.Twoapplicationscenariosaredescribedinsection5.Theresultsarefinallydiscussedinsection6.
1.1TheChallengeof3DVisualization
ConveyingmultidimensionalinformationTherearenumerousappli-cationsinwhichdatasetsarenaturallygiveninmorethantwodimensions.
–3–
1.1TheChallengeof3DVisualization1INTRODUCTION
Thefieldsthesestemfromareasdiverseasmedicine,biotechnology,geo-science,engineering,meteorology,astrophysics,orfluidmechanics.
Traditionalcomputergraphicshasbeenconcernedwithsurfacerendering,applicablefortaskssuchascreatingavirtualmazeconstructedfrompolygonsorsplines.Volumerendering,incontrast,aimsatgeneratingimagesfrom3Dscalardata.Thisdatahasmostlybeenacquiredfromphysicalmeasurements,butmayalsointurnbearesultofacomputersimulation[EHK+06].
A3Ddatasetisreferredtoasavolume.Itisspatiallydiscretizedintocubodialvolumeelements,voxels,eachofwhichcarriesacertaindatavalue,itsdensity.Sometimesavoxelisconsideredtodenotethecentreofthiscubodialelement,thatis,apointin3Dspace.Fortheremainderofthisessay,though,avoxelshalldenotetheactualsmallvolume[EHK+06].Thevoxel’sdensitiesstemfrommeasurementsofobject-differentiatingpropertiesinthephysicalobject.Animportanttask,eventhoughoftenaccomplishedimplicitly,istoreconstructthein-betweendensities.Involumerendering,thisistypicallydoneinanad-hocfashion,e.g.byinterpolation.
Frequently,a3Ddatasetiscreatedfromasetof2Dslices,thatis,fromplanesthroughthedatasetwithacertainamountofspacinginbetween.Theymayhavebeenacquiredfromadigitalradiograph,computerizedto-mography(CT),magneticresonanceimaging(MRI),positronemissionto-mography(PET),single-photonemissioncomputedtomography(SPECT),ultrasound(US),orfunctionalMRI(fMRI).Mostexamplescanbefoundinmedicine,inwhichtypicalclinicalapplicationsincluderadiodiagnostics,radiationtherapyplanning,andcomputeraidedsurgery.
Fundamentally,datavaluescarryinformationaboutthestructureoftheobjectunderstudy(e.g.x-rayattenuationinCT,orrelaxationtimesuponmagneticallyexcitingthetissuesinMRI),oraboutitsfunction(e.g.fluidflowinPET).Giventherestrictionthatitisimpossibletocompletelyshoweachvolumesamplesimultaneously,thekeychallengeof3Dvisualizationthereforeistoconveythevaluedistributionofagiven3Ddatasetasclearlyandaccuratelyaspossible[ER00].Morespecifically,Hadwigeretal.de-scribethegoalastobeable“tovisuallyseparateandselectivelyenablespe-cificobjectsofinterestcontainedinasinglevolumetricdataset.”[HBH03]Generatinga3DsensationAtypicalconventionalapproachtovolumevisualizationistosimplydisplay2Dslicesastheyhavebeenrecordedindi-vidually.Theymightbeshowninthewaytheyhavebeenobtainedfromthephysicaldevice,thatis,alignedtooneoftheplanesofthecoordinateaxes;ortheymightbecomputedasarbitraryslicesthroughthevolume.Atypicalwayofprovidingcontextistovisualizethreeperpendicularslicesthrough
–4–
1.2CommonRequirementsinVisualization1INTRODUCTION
Figure1:Inaconventionalvolumevisualizationapproach,threeperpendic-ularplanesthroughthesamevoxelareshown.Here,theyrepresentsaggital,axialandcoronalslicesthroughanMRIscanofahumanbrain.
thesamesharedvoxelatonce,asfrequentlyusedinmedicalapplications(seeFig.1).
Althoughanimationsthatstepthroughtheslicesmayhelp,evenfortrainedobserversittendstobedifficulttofullygraspthestructureofavolumebymerelybeingpresented2Dslices.Thechallengeof3Dvisual-ization,fromthisperspective,istogenerateanaccurate,yetintuitive,3Dsensationofthedatasettobeanalyzed.
1.2CommonRequirementsinVisualization
Objective-orientedvisualappearanceTheconceptualideabehind3Dvisualizationistosimulatelightasittravelsthroughamediuminordertoproduceanimageasrecordedbyacamera[EHK+06].Whenmodellingemission,absorption,andscatteringoflight,theopticalpropertiesofthematerialunderstudyneedtobetakenintoaccount.However,realismisoftentradedagainsttheuseofmoretractablemodels.
Imagequalityin3Dvisualizationdependsheavilybothontherenderingmethodandontheparametersusedtotunethemethod.Therefore,animportantaspectin3Dvisualizationistodeterminetheobjectivesofthevisualizationfirst.Isthegoaltoseparatedifferentkindsoftissueinananatomicalimage?Orisittofocusononestructurewhiledimlyprovidingthecontextofthesurroundingsatthesametime?
Visualizationobjectivesguidetwocanonicalquestions:•Whichrenderingtechniqueistobeused,andwilltherepotentiallybedifferenttechniquesfordifferentsegmentsoftheoverallvolume?
–5–
1.2CommonRequirementsinVisualization1INTRODUCTION
•Whataresuitableparametersforthetechniques,andhowcantheparameterspacebeexploredsoastogiveoptimalresults?
Information-per-pixelratioAssoonasa3Ddatasetisrenderedfora2Dviewingmedium,therewillinallprobabilitybepixelsthatcarryin-formationfrommorethanonecorrespondingvoxel.Thenotionofhavingamultitudeofobjectsinanimage,oranumberofvoxelsperpixel,islooselyreferredtoasaninformation-per-pixelratiooftherenditiongreaterthanunity.
Expressiveresultsdependonasuitableinformation-per-pixelratio.For-tunately,humansareabletodistinguishbetweendifferentobjectsina3Dscenetoacertainextent,evenwhenobjectsarelayeredontopofeachother.Forexample,animagemightcontainabonesegmentsurroundedbytissue.Iftheinformation-per-pixelratioistoolow,thefullpotentialofvol-umevisualizationisnotexploited.Ifitistoohigh,theimagebecomesoverloaded.Empiricalresultshaveshownthatthereisalimitofaboutthreesemi-transparentstructuresperimagethatshouldnotbeexceeded[HMBG01].
InteractiveframeratesIthastakenalongtimeuntilvolumevisualiza-tionhasbecomeappliedwidely.Oneofthemainobstaclesusedtobethelackofinteractivity[Pfi04].However,withrenderingtechniquesthatareabletocreaterenditionsininteractivetime,thatis,atratesofseveralframespersecond,awholerangeofnewopportunitiesunfolds:
•Visualsensationcanbeimprovedhugelythroughmotionparallax.Forexample,theeyepositionmayrotatearoundtheobject,ideallycon-trolledbydirectuserinteraction.
•Afruitfulwayoffindingsuitablerenderingparametersistobeabletosettheminteractively.
•Afourthdimensioncanbeincorporatedintothevisualizationsensationbychangingoneparameterovertimeandimmediatelyupdatingtheimageaftereachstep.Forinstance,thisallowsforvisualizationofdynamicalsystems(seesection5.2).
Interactivityistypicallyachievedbyasmuchpreprocessingaspossible,fastrenderingimplementationsandsophisticatedprogrammablegraphicsprocessingunits(GPUs).
–6–
2RECENTRESEARCH
2RecentResearch
Section1.2posedtwocanonicalquestionsaboutvisualization:Whichtech-niquesshouldbeused?Andwhatparametersaremostsuitabletoyieldthedesiredresults?Inordertounderstandwheretwo-levelvolumerenderingwillsetin,aselectionofrecentimprovementsuponconventionaltechniquesaredescribedhere.
2.1VisualizationMethods
Recentresearchonmethodsdealswithhowtochooseasuitablerenderingtechniqueandhowtochoosefromthehugenumberofvariantsthathavebeenproposed.
VolumeillustrationTheaimofvolumeillustrationistocreaterenditionsthatare,inprinciple,basedonarealisticphysics-basedilluminationmodel,butmayatthesametimehighlightparticularobjectfeatures.Thisemphasisisnotrestrictedtotheusageofaspecifictransferfunction,afunctionthatmapsasamplingpoint’sdensitytocolourandopacityvalues.Instead,non-photorealisticeffectsmaybeusedaswell[ER00].
Inmanyrenderingtechniques,opticalpropertiesoftherenditionaremainlydeterminedbyatransferfunction.Involumeillustration,apartfromitssamplingpoint’slocationandinterpolateddensity,thecolourofapixelisalsodeterminedbyotherproperties.Thesemayincludethelocalgradient,theviewingdirection,andlightingsettings.
Volumeillustrationhasbeensuccessfullyusedforimagesintextbooksandpresentations.
OtherapproachesAmajorpartofcurrentresearchfocusesontheinter-activevisualizationofunstructuredvolumes[Pfi04].Otherapproachesareconcernedwiththevisualizationofdynamicalsystems,withvolumecompres-sion,orimage-basedvolumerendering.
2.2VisualizationParameters
Researchonparametersisconcernedwithhowtoconfigureagivenrenderingtechniqueappropriately(e.g.bysettingsuitablesegmentationthresholds,orapplyingcertaintransferfunctions)inordertoobtainthedesiredresults.Itisaboutefficientlysearchingahugeparameterspace.
–7–
2.2VisualizationParameters2RECENTRESEARCH
InversedesignAnapproachinspiredbyrelationalalgebraisinversede-sign.Ifanobjectivefunctioncanbespecifiedthatquantifiesthedesiredresultoftherendition,then,byinvertingthisfunction,thecorrectparame-terscanbeobtained.
Inpractice,however,itisusuallyimpossibletospecifyanobjectivefunc-tionandestablishatractableanalyticlinkbetweeninputparametersandoutputquantities.
InteractiveevolutionIfitisillusivetosufficientlyformaliseanobjec-tivefunction,onemightresorttoatrial-and-errorprocedure.Ininteractiveevolution,theevolutionarytechniquesofmutationandrecombinationareusedtoconstructnewvectorsofinputparameters.Thephaseofselectionisperformedbytheuser.Thus,ratherthanhavingtoworryaboutallthedetailsoftheindividualrenderingparameters,theusermerelyjudgesupontheresultandimplicitlyforcestheexplorationprocesstowardsthedesireddirection.
Thisparadigmhasoriginallybeenproposedas‘simulatedevolution’,in-troducedtocreatecomplex3Dstructureswithanelementofrandomness,suchasplantsortrees[Sim91],butmayequallywellbeappliedtorenderingparameters.
Themaindownsideofinteractiveevolutionisthatitcruciallyreliesoninteractiveframerates.Ifparametersaretobefoundforhigh-qualityrendi-tions,thisisnotensuredanylonger.
DesigngalleriesIfrenderingiscomputationallytooexpensivetoallowforinteractiveframerates,designgalleriesproposeawayofuntanglingthetemporalsuccessionofrenderingandperceptualchoiceasitisrequiredininteractiveevolution[MAB+97].
Adesigngalleryinterfacefirstaskstheusertospecifywhichinputparam-etersaretobevaried,andtoroughlyspecifyanoutputvectorthatindicatesthesubjectivelyimportantpropertiesofthefinalimage.Thesystemthentemporallycreatesalargenumberofrenditionsthatarebasedondifferentparametercombinations,andcomputestheoutputvectorforeachofthese.Adistancemetricisusedtofindtheperceptualsimilaritiesbetweentheren-ditions.Thesystemdeterminesasubsetofrenditionsthatcorrespondstoawell-distributedsetofoutputvectors.Finally,theuserispresentedwithatreestructurethatmakesitpossibletobrowsethrough,pick,andpotentiallycombinethedesiredrenditions.
–8–
3VOLUMERENDERINGTECHNIQUES
3VolumeRenderingTechniques
Renderingtechniquesingeneraltransforma3Ddatasetintoa2Dimage.Two-levelvolumerenderinginparticularfusesotherrenderingtechniques.Themosttypicalonesforthis,directvolumerendering(DVR)andmaximum-intensityprojection(MIP),arediscussedinsections3.1and3.2,respectively.Aswithallrenderingtechniques,DVRandMIPcanbeconceptuallysplitupintoapreprocessingandarenderingstage.Theirsharedcharacteristicsaredescribedinthesequel.
PreprocessingRenderingalgorithmsoftentakeinrawdataandperformallnecessaryprocessingimplicitly.Often,however,theyworkwithaprepro-cesseddatasetinstead.
Preprocessingmostlyinvolvessomeformofsegmentation.Itspurposeistoextractobjectinformationfromagivenvolume,andoutputanobjectsystem,i.e.asetofdistinctobjectstheoverallsceneiscomposedof[Udu00].Forinstance,propersegmentationiscrucialforarealisticdisplayoftissue.Perfectsegmentationcansometimesbeachievedwhenavolumehasbeenregisteredfrommorethanonemodality.
Furthermore,preprocessingofteninvolvesaugmentingthegivendatasetbymeansofadditionalcomputations.Forexample,surfacerenderingre-quiresinformationaboutthegradientofeachofthevoxels,andthisgradientmaywellbeprecalculatedandstoredalongwiththevolume.
RenderingBothDVRandMIPcoverthreecloselyrelatedtasks,allofwhichareimportanttoconstructagoodsenseof3D[Udu00]:
1.Projectiondeterminesthemappingbetweensamplingpointcoordinatesandpixelcoordinates.Inparallelprojection,theprojectionlinesfromallsamplingpointsontotheviewingplaneareparalleltoeachother.Thisimpliesthatthesizeofallobjectsisindependentoftheirdistancefromtheviewingplane.Thisbadlyaffectsrenditionswheretheeyepo-sitionisinsidethevolume.Aminoreffectisthatitbecomesimpossibletotellthedirectionofrotationifnoadditionalcuesareprovided.Inperspectiveprojection,theprojectionlinesconvergeintheeyeposition.Objectsthatarefurtherawayappearsmaller.2.Hiddenpartremovalensuresthatpartsthatareentirelyobscuredbyothersarenotprojectedontotheviewingplane.
–9–
3.1DirectVolumeRendering3VOLUMERENDERINGTECHNIQUES
(a) 2D textureslicing(b) 3D textureslicing(c) Ray casting(d) Splatting(e) Nearest-neighbourinterpolation(f) Optimizedaccumulation(g) Shear-warprendering(h) VoxelprojectionFigure2:Commonprojectionmethodsinvolumerendering(a,b,c,d,andgtakenfrom[Pfi04]).
3.Shading,orcompositing,ultimatelyassignsacertaincolourtoeachpixelintheviewingplane.Thecolourdependsonthecolourofthesamplingpoint,itsopacity,gradientorlightingparameters.
3.1DirectVolumeRendering
Directvolumerendering(DVR)isarenderingtechniquethatcreatesaren-ditionfromtheentiresetofvoxelsofa3Ddataset.3.1.1
Method
PreprocessingDuringpreprocessing,segmentationismostlyusedtosep-aratedifferentobjectsintherawdataset.Furthermore,wholeportionsofuninterestingregionsmaybesectionedoutofthevolume.
RenderingThemostpervasiverenderingparadigmonmodernGPUsistextureslicing(seeFig.2a/b).Thegivenvolumeisstoredasasetof2Dtextureslicesorasasingle3Dtexture.Polygonsspanningtheslicesofthevolumewiththesetexturesarethenrenderedontotheprojectionplaneusingascanlinealgorithm.
–10–
3.1DirectVolumeRendering3VOLUMERENDERINGTECHNIQUESThemostpopularalternativeparadigmisraycasting(seeFig.2c).Inafirststep,raysarecastfromtheeyethroughthepixelsintheviewingplaneintotheviewingfrustum.Second,theintersectionoftherayandthevol-umetobevisualizeddefinesaraysegment.Alongthissegment,anumberofequallyspacedsamplingpointsaredetermined.Foreachofthesepoints,atrilinearinterpolationiscomputedfromthesurroundingvoxels’densityandgradientvalues[Pfi04].Third,atransferfunctionisappliedtothesam-plingpoint,assigningitacolourandanopacity.Thetransferfunctionmayalsodependonthesegmentationinformationfrompreprocessingandscenelighting.Technically,ityieldsanRGBA4-tuplewhereAspecifiesthevoxel’sassignedopacity.Notethatdifferentresultswillbeobtaineddependingonwhetherthetransferfunctionisappliedbeforeorafterinterpolation.Fourth,thebackgroundcolour(e.g.black)andallsamplingpointsalongtherayareaccumulated.Thesinglecolourvalueobtainedistransferredtothecorre-spondingpixelinaframebuffer,andtheprocessrepeatsforeachpixelintheviewingplane[Udu00].
Bothtextureslicingandraycastingcanberegardedasimplementationsoftheabsorption-emissionmodeloflighting—aslightlysimplifiedlightingmodelwhoseonlyopticalfeaturenotbeingaccountedforisscattering.Atechniquethatdoesincludethiseffectisraytracinginwhicheachraymaybesplitupandpursuedinmultipledirections,butitcanvastlyincreasecomputationalcomplexity.
Manyvariantshavebeenproposedtotherenderingalgorithmdescribedabove.Inparticular,thetransferfunctionusedforshadingprovidesmuchroomforvariation.Ittakestheimportantroleofdeterminingwhichphysicaldatavaluesaremappedtowhatkindofvisualproperties.Thus,therender-ingprocessmayeitheraccuratelysimulateaprocesssuchastheilluminationofagaseousvolumebylightrays[ER00];oritmayuseanarbitrarytransferfunctionthatspecificallyemphasizesdensityvaluescorrespondingtocertainphysicalpropertiesinordertohighlightregionsofinterest.
Withtransferfunctionspotentiallytakingintoaccountgradientsaswell,surfacenessbecomesacontinuousmeasure,ratherthanaBooleanindicator,ofthedegreetowhichthevoxelrepresentsaboundarybetweendisparateregions[ER00].
Aboveandbeyondtheseexamples,asrenderingtechniqueshavematured,transferfunctionshavebecomemoreandmorecompelling.Theyhavetrans-formedfromsimplecolourassignmentstopowerfultoolsforpatternidenti-ficationandsegmentation.
–11–
3.1DirectVolumeRendering3VOLUMERENDERINGTECHNIQUESVariantsTherearenumerousvariantstotextureslicingandraycastingthatarealsorelevanttotwo-levelvolumerendering.
Splatting.Insteadofinterpolatingsamplingpoints,thevoxelsofthedata
volumethemselvesareprojected,or‘splattered’,ontotheviewingplane(seeFig.2d).Becauseofthelackofequidistantsamplingpoints,thedensityofthedatapointsin‘depthdirection’variesamongrays.Sinceitsrenderingloopiteratesontheobjectsratherthanontheviewingplanepixels,splattingisanexampleofanobject-orderapproach,asop-posedtoanimage-orderapproach.Theresultingimagequalityisnotcomparablewithproperraycasting,butinteractivitymaybeaccom-plishedmuchmoreeasilysincecomputationallyexpensiveinterpolationisdropped.Nearest-neighbourinterpolation.Insteadofcomputingacostlytrilin-earinterpolationfromalleightvoxelsthat,asidefrombordersandcorners,surroundeachsamplingpoint,itmaysufficetosimplydeter-minethesinglevoxelwhosecentreisclosesttothesamplingpoint(seeFig.2e).Thisreducesimagequalitybyinducinganti-aliasingartifacts,butgreatlyincreasesrenderingspeed.Optimizedaccumulation.Thepursuitofaraytravellingthroughthevol-umeinfront-to-backordercanbeabortedassoonasacertainopacitythresholdhasbeenreached,e.g.95%(seeFig.2f).Furthervoxelsarenotexpectedtomakeasignificantcontributiontotheoverallcumu-latedvalueanymore.Conversely,allvoxelswithanopacitybelowacertainthreshold,e.g.10%,maybetaggedduringpreprocessingandignoredduringopacityaccumulation.Furthermore,low-opacityvoxelswhichareembracedbyvoxelswithhighopacitiesmightbeneglectedaswell[Udu00].Shear-warptransformation.Inparallelprojection,hiddenpartremoval
canbespeededupvastlybyaddingashearandawarpsteptotheover-allviewingtransformation(seeFig.2g).First,thesceneisshearedbyshiftingtheslicesofthevolumesuchthatthepointsofintersec-tionofeachraywiththesliceplaneareinrowsparalleltooneofthescenecoordinateaxes.Theshearedsceneisprojectedontoanauxiliaryviewingplane.Second,theauxiliarybufferiswarpedintothecorrectorientationandscale,andfinallycopiedintothemainimagebuffer.Voxelprojection.Shadingcanbespeededupinconjunctionwithashear-warptransformation.Insteadofapplyingtheconventionalraycasting
–12–
3.1DirectVolumeRendering3VOLUMERENDERINGTECHNIQUES
routine,voxelsaretraversedinback-to-frontordersuchthatthefrontplaneofthevolumefacestheviewingplane(seeFig.2h).Theinputlightoftherearplaneofvoxelsisgivenbythebackgroundlight.Itsoutputlightiscomputedbytakingintoaccounttransmission(depend-ingonitsopacity),emission(dependingonitsdensity),andreflection(dependingonitsgradient),andinturnbecomestheinputlightforthesuccessorvoxel.Thelightthatisoutputbythefrontlayerofvoxelsisthenprojectedontotheviewingplane.3.1.2
Discussion
StrengthsInitsstandardcompositingstep,DVRtakesintoaccountallinformationcontainedinthevolume.Accordingly,ithasbeensuccess-fullyappliedtovisualizeclearstructuresthatdonotresultintoohighaninformation-per-pixelratio.Typicalsuchstructuresincludebloodvesselsandbones.ParticularstrengthsofDVRare:
•Completeness.Ifatransferfunctionisusedthatassignsnon-opaquetransparencyvaluestovoxels,everysinglevoxelinthevolumepoten-tiallycontributestothefinalimage.Thus,thestructureofthefullvaluedistributioncanbevisualized,providedthatthishighlevelofsophisticationisrequired.
•Clarity.DVRrenditionstypicallyproviderealisticandfamiliarviewswithacomparativelygood3Dimpression[HMBG01],especiallywhenaperspectiveprojectionisemployed.
•Flexibility.Usingamultidimensionaltransferfunctionsacrificessomeeaseofinterpretation,butopensupawholespectrumofpossibleap-pearancesforthevolume[ER00].
WeaknessesTheopticallimitationsofDVRbecomeapparentwhenvisu-alizingobjectswithacomplexinteriorstructureorwithoutaclearcorre-spondencebetweendatavaluesandobjecttype[HMBG01].Forexample,inMRIvolumes,airandbonetypicallyhaveverysimilardensities;hence,theyarenotdistinguishableinthefinalrendition.ThestrengthsofDVRareopposedbythefollowingweaknesses:
•Computationalcomplexity.Textureslicingcanmeanahugememoryoverhead,andyetdoesnottakeintoaccountthecomplexityoftheoutputimage.Raycasting,ontheotherhand,doesaddressthisis-sueand,moreover,isopticallycorrect.Obviously,itscomputational
–13–
3.2Maximum-IntensityProjection3VOLUMERENDERINGTECHNIQUES
complexityismuchhigherasitneedstocomputethecoordinatesof
samplingpointsalongtheray,interpolatedensityvalues,andstoretheentiresceneinmemory.Butthevariantsdescribedabovecanspeeduptheprocesssignificantly.Infact,recentimplementationsdoreachinteractiveframeratesonordinaryGPUs.
•Opticallimitations.DVRrenditionsona2Dviewingmediumtendtolookoverloadedandblurry,becausemanyvoxelsareprojectedontoasinglepixelintheviewingplane[HMBG01].Forthesamereason,theyareintrinsicallysubjecttoambiguityastothedepthofvoxels.Thebestwaytoovercomethisisbymotionparallax.
•Setup.Itisnottrivialtofindatransferfunctionthatyieldsthedesiredresults.Usuallysubstantialhand-tuningisindispensable[ER00].
3.2
3.2.1
Maximum-IntensityProjection
Method
Maximum-intensityprojection(MIP)isarenderingtechnique,verymuchakintoDVR,thatcreatesarenditionfromaspecificselectionofvoxelsofa3Ddataset.
InDVR,therenderingstageinvolvedcompositingallinterpolatedsam-plingpointsalongaraythathadbeencastthroughthevolume.MIPreliesonthesameprinciplesinpreprocessingandrendering,butitscompositingstepisdifferent.
Insteadofusingatransferfunctionthatassigneachdensityvalueacertaincolourandopacity,MIPisusuallybasedonasimpleisotonicrelationbetweendensityandcorrespondingintensity,thatis,brightness.Further,insteadofaccumulatingcolourandopacityvaluesalongtheray,MIPmerelyprojectsthatsamplingpointontotheviewingplanethathasthehighestintensity.Inqualitativeterms,MIPcanbesaidtorenderthe‘mostimportant’voxelsonly.Itdoesnotpileupseverallayersofvoxelsontopofeachother,butmerelychoosesthemostoutstandingvoxelalongeachray.
InordertoillustratehowMIPcontraststoDVR,consideraformaldepic-tionofthecompositionprocess.Ifcarriedoutinback-to-frontorder,DVRshadingcanbedescribedas
Cdst←(1−αsrc)Cdst+Csrc,
whereCsrcdenotesthesourceradiancecomputedforthecurrentvoxel,αsrcitsopacity,andCdsttheaccumulatedradiance.Inotherwords,theupdate
–14–
3.2Maximum-IntensityProjection3VOLUMERENDERINGTECHNIQUESequationtakesintheradiancethathasbeenaccumulatedsofar,Cdst,filtersitaccordingtothetransparencyofthecurrentvoxel,αsrc,andaddstheradianceemittedbythecurrentvoxel,Csrc.InMIP,thisiterativeassignmentreducesto
Cdst←max(Cdst,Csrc),
whichalsoshowsthatthecompositingschemeisnowindependentfromtheorderoftraversalindepthdirection[EHK+06].
MIPisalmostalwaysusedinconjunctionwithparallelprojection.Fur-ther,atransferfunctionissometimesappliedthatmodulatesbothlightnessandcoloursaturationofthepixelsinordertomakeuseofcolour,e.g.inmedicalimages[HMBG01].AllotherstepsaretechnicallyidenticaltoDVR,andmostofitsvariantscanbeappliedlikewise.3.2.2
Discussion
StrengthsMIPdrasticallyreducestheinformation-per-pixelratioto1.Accordingly,itismosteffectivewhenthisreductioncanbemadeuseof.Thismaybethecasewhentheobjectsofinterestaresparse,haveasimpleshape,and,intermsoftheirdensityvalues,arebotheasytoseparatefromtheirsurroundingsandfairlyhomogeneouswithinthemselves[Udu00].MIPmayalsoprovepowerfulwhenthevolumecontainsverycomplexstructureswhichwouldoverloadthefinalimageifitwasrenderedwithDVR.TheparticularstrengthsofMIPare:
•Noaccumulation.ThekeyadvantageofMIPisthatnoexpensivecompositingofRGBAvaluesisrequiredduringrendering.
•Nosegmentation.Anotheradvantageisthatitdoesnotnecessarilyrequiresegmentationofanysort.Onecouldarguethataformofsegmentationisimplicitlyincludedinchoosingthemaximumamongthevoxeldensitiesalongaviewingray.Butasubsetofsamplingpointschosenthiswayhasonlyaveryindirectrelationtotheboundariesoftheunderlyingobjectsystem.
MIPhasbeensuccessfullyusedforskin,softtissue,andothercom-plexinnerstructures.Afrequentclinicalapplicationisvirtualangiography[EHK+06].
–15–
4TWO-LEVELVOLUMERENDERING
Weaknesses
•Poor3Dimpression.SinceMIPismostlyusedwithparallelprojection,itsrenditionslackareasonable3Dimpression.Infact,projectingonlythemaximum-intensityvoxelalongparallelraysimpliesthatrenditionsfromoppositeviewpointsaresymmetrical.Interactionisrequiredtoreconciletherenditionwiththeunderlyingobjectsystem[HMBG01].Moreover,sinceonlyasinglevoxelalongeachrayisprojectedontotheviewingplane,itisdifficulttocomprehendthegeometricrelationsamongtheshapesofobjects[Udu00].
•Lostcontext.SinceMIP,unlikeDVR,doesnottakeintoaccountsev-erallayersofvoxels,therenditionislimitedtothemostprominentstructuresinthevolume.Thecontextofweakerstructuresislost.•Noocclusion.Sincevoxelsalongaviewingrayareeffectivelyshowninanarbitraryz-order,nomutualhidingisaccountedfor[HMBG01].TherearefewsituationsinwhichtheidealconditionsforMIParemet.Frequently,otherbrightobjects,suchasbonesinCTimagesornoisefrommetalobjectsinMRI,havethehighestdensitiesandobscuretheoriginalregionsofinterest.Eveniftheseregionshavethehighestintensity,theymaynotbesparse,leadingtoanimageofplainhighbrightnessinwhichdetailsarelost[Udu00].AtypicalexampleforthisconditionistheMIPrenditionofaskull(seesection5.1).Thesituationcansometimesbeeasedbyapplyingamedianfilterthatremoves‘shotnoise’fromtherawdatabeforevisualization.
4Two-LevelVolumeRendering
Insection2,anumberofrecentimprovementsweredescribed,withap-proachesbeingconceptuallydividedintothoseforexploringmethodsandthoseforfindingsuitableparameters.
Two-levelvolumerenderingcannowbeunderstoodasanapproachthattacklesbothmethodsandparameterspaceexplorationbyfusingDVRandMIP.Itisconcernedwiththenotionofcombiningdifferenttechniquesandparametervectors,andmaytherebyhelpuntangletheproblemoffindingasinglemethodandasetofparametersthatsuitawholevolume.
4.1Motivation
Despitetheirdifferences,DVRandMIPshareacommonweakness:Ifthevolumecontainsseveraldistinctobjectsallofwhichhavearathercomplex
–16–
4.2RenderingModel4TWO-LEVELVOLUMERENDERING
interiorstructure,thentheresultingrenditionislikelytobeoverloadedwithdetails.Whatisoftenrequiredisaclearrenditionofsomeinterestingstruc-turewhilethesurroundingcontextisonlyfaintlylit.Thisnotionoffocusandcontexthasbeensubjecttorecentresearch,andgreatlyexemplifiesthecentralmotivationfortwo-levelvolumerendering.
AshasbecomeapparentinthediscussionofDVRandMIP,itheavilydependsonthenatureoftheunderlyingdatawhichrenderingtechniqueismostsuitabletoyieldthedesiredresults.Ifsegmentationinformationwasgiventhatseparatesdistinctobjectsinthevolume,thenonemightnotonlyemployindividually-tunedtransferfunctionsbutevenusedistinctrenderingtechniquesfordifferentkindsofobjects.Therenderingprocesswouldturnintoanestedprocessoftwolevels:alocallevelforindividualobjectsandagloballevelfortheoverallrendition.Thisistheideaoftwo-levelvolumerendering[HMBG01].
4.2RenderingModel
Therenderingmodeloftwo-levelvolumerenderingisbasedonraycasting.However,forperformancereasons,theactualrealizationemploystheshear-warptransformationdescribedinsection3.1.1.Thismeansthateveryvoxelismappedontoexactlyonepixelintheviewingplane,anditimpliesthatvoxelscanbeprocessedinback-to-frontorder.Conceptually,raysareshotandpursuedthroughthevolume;practically,voxelsaretraversedfrombacktofrontinparallel.
Shear-warprenderingrequiresthattheboundingplaneofthevolumewhichisclosesttotheviewingplaneisknown.Thisinformationcanbecapturedbygivingthecoordinateaxisthatisclosesttobeingparallelwiththeviewingaxis.Callthistheprincipalviewingdirection,orpvd.
Theonlypreliminaryrequirementfortwo-levelvolumerenderingisa3Dsegmentationmaskwhichassignsauniqueobjectidentifiertoeveryvoxel.Asaresult,themaskpotentiallypartseveryrayshotintothevolumeintoseveralsegments.
Asthetwo-levelvolumerenderingraycastingroutinetraversesalongaray,ittakesaccountoftheobjectIDofthecurrentsamplingpoint.AslongastheobjectIDdoesnotchange,thesamplingpointsareaccumulatedintoalocalbuffer,dependingonthatobject’slocalrenderingtechnique,DVRorMIP.Assoonasanewobjectisentered,however,thislocalbufferisaccu-mulatedintoaglobalbuffer,dependingontheglobalrenderingtechnique,typicallyDVR.Astherayexitsthevolume,thelastlocalbufferisaddedtotheglobalbuffer,whosecolourvalueinturnisassignedtothecorrespondingpixelintheviewingplane.
–17–
4.3Implementation4TWO-LEVELVOLUMERENDERINGvoxelArray[z]x,y,lastVisibleR,G,B,Alast...firstz,objId,rendMode,opacityrenderList[z]...Figure3:Datastructurescreatedduringpreprocessingfortwo-levelvolumerendering.Eachboxrepresentsasinglearrayelement,withitsfinalfieldsindicated.Thevoxelarrayandtherenderlistaredepictedforthezaxis;theyarecreatedfortheothertwoaxesaswell.
4.3Implementation
Theimplementationoftwo-levelvolumerendering,asproposedbyHauseretal.[HMBG01],realizestherenderingmodeldescribedinsection4.2.PreprocessingThepreprocessingstageinvolvestheconstructionoftwosetsofdatastructuresthatwillbeusedduringrendering(seeFig.3).•Voxelarray.Threearraysarecreated,calledvoxelarrays,oneforeachprincipalviewingdirection(pvd).
Consider,withoutlossofgenerality,thezvoxelarray.Thearrayisinitializedwiththevoxelsofthegivendataset.Initially,eacharrayelementisan(x,y,z,density)-tuple.AnysegmentationinformationavailableisthenusedtoassignauniqueobjectidentifierasanobjIdfieldtoeachvoxel.Similarly,thegradientofeachvoxelisprecomputedandaddedasagradientfield.Sinceparallelprojectionwithshear-warprenderingwillbeused,nocomputationofsamplingpointswillberequired.Thus,thetransferfunctioncanbeapplieddirectlytothevoxelsbeforerendering.Thisway,thedensityandgradientfields
–18–
4.3Implementation4TWO-LEVELVOLUMERENDERING
inthearrayarereplacedby(R,G,B,A)fieldsspecifyingcolourandopacityofthevoxel.
Atthisstage,thearraycontainsthefieldsx,y,z,objId,R,G,B,andA.Itissortedaccordingtoitszcoordinate.
•Renderlist.Threefurtherarraysareconstructed,calledrenderlists,oneforeachpvd.
Eachrenderlistisinitializedwithentriesforallobjectsinthescene.Atthisstage,anentrycontainstheobjIdofitsrespectiveobjectonly.Consideragainthezrenderlist.If,say,segmentationhasseparatedbone,vesselsandtissue,thelistcontainsthreeentries.ThevoxelsassignedtoeachobjIdarenowtraversedinthevoxelarray.Foreachobject,thesinglerenderlistentryisturnedintoanumberofentrieseachofwhichcontainsadistinctzcoordinatethatoccurssomewhereinthatobject’svoxelarray,suchthatallappearingzcoordinatesarecoveredbyoneandonlyonerenderlistentry.
TheobjIdandzfieldsinthezvoxelarrayentriesarenowredundant.Forthatreason,insteadofstoringtheminthevoxelarray,theyareremovedandstoredonlyonceintheircorrespondingrenderlisten-try.Thisentryholdstwopointers,firstandlast,whichindexthefirstandthelastvoxelbelongingtoit,respectively.Athirdpointer,lastVisibleindicatesthelastvoxeltobeconsideredduringrender-ing.Thisway,clippingcanbeefficientlyintegratedintopreprocessingbysimplymovingallvoxelstobeclippedawaytothebottomofeachzsegmentinthevoxelarray,andhavingthelastVisiblefieldpointtothelastvisiblevoxel.
Finally,eachrenderlistentryalsocontainsfieldsindicatingitsobject’slocalrenderingmode(e.g.DVRorMIP)andtheobject’sgeneralbase-lineopacitysettingwhichallowstheusertogenerallyincreaseorre-duceanobject’stransparency.Therenderlistnowcontainsthefieldsz,objId,rendMode,opacity,first,lastVisible,andlast.Thepreprocessingphaseverballydescribedabovecanbeformalisedasfollows(adaptedfrom[HMBG01]):
PreProcessRenderLists{
FOREACHpvdIN{x,y,z}{FOREACHobjId{
FOREACHpvdValue(depthvaluesconcerningpvd){first=indexoffirstvoxelINvoxelArray[pvd]
–19–
4.3Implementation4TWO-LEVELVOLUMERENDERING
Figure4:Conceptually,arayisshotfromtheeyepositionthroughtheviewingplaneintothevolume.Thesegmentationboundarybetweenthetwosegments,skullandvessels,maybecrossedmanytimes.
WHERE((voxel.objId==objId)AND(voxel.[pvd]==pvdValue));
lastVisible=indexoflastvoxelinvoxelArray[pvd]WHICHisnottobeclippedawayWHERE((voxel.objId==objId)AND(voxel.[pvd]==pvdValue));
last=indexoflastoverallvoxelinvoxelArray[pvd]WHERE((voxel.objId==objId)AND(voxel.[pvd]==pvdValue));
renderList[pvd].addEntry(objId,pvdValue,first,lastVisible,last);}}}}
RenderingItistheinterleavedworkingofthelocalandtheglobalbufferthatconstitutesthecoreideaoftwo-levelvolumerendering(seeFig.4).
–20–
4.3Implementation4TWO-LEVELVOLUMERENDERING
•Localbuffer.Thelocalbuffer,orobjectbuffer,isusedforwithin-objectrendering.Foreachpixelintheviewingplane,itholdsacolour,anopacity,andanobjIdvalue.Itisinitializedwithallzeros.
•Globalbuffer.Inter-objectrenderingisaccomplishedwiththeglobalbuffer.Liketypicalbuffersinconventionalrenderingtechniques,itholdsasimplecolourvalueforeachpixelintheviewingplane.Itisinitializedwiththebackgroundcolourofthescene.
Dependingontheviewingdirection(pvd),therenderingroutineworkswithtwoofthesixpreprocesseddatastructures,voxelArray[pvd]andrenderList[pvd].Foreachitemintherenderlist,itaccumulatesthepro-jectionsofthecorrespondingvoxelsinthelocalbuffer.IfthecurrentobjIdofthecorrespondingpixelinthelocalbufferisdifferenttotheobjIdofthecurrentrenderlistentry,thenthatpixelisremovedandmergedwiththerespectivepixelintheglobalbuffer.Thisway,theimplementationwalksthroughallviewingraysinparallel,workingitswaythroughthevolumeinback-to-frontorder.Afterthelastentryhasbeenprocessed,thelocalbufferhastobemergedwiththeglobalbufferonelasttime.Theglobalbufferisthenwarpedtoyieldthefinalimage.
Theprojectionstepassignseverypixelthatjoinsthelocalbufferacolour.Typically,distinctcoloursareusedfordifferentobjectsinascene,withthetransferfunctionmerelyalteringsaturationasdeterminedbythecurrentdensityandgradient.Otherimplementationsareequallypossible,though.Formally,therenderingprocedurecanbesummarisedasfollows(adaptedfrom[HMBG01]):
RenderVolume{
FOREACHentryINrenderList[pvd]{FOREACHvoxelINvoxelArray[pvd]{
IF(entry.first<=voxel.id<=entry.lastVisible){pixel=project(voxel,pvd);
IF(localBuffer[pixel].objId==entry.objId){
localBuffer[pixel].include(pixel,entry.rendMode);}ELSE{
globalBuffer[pixel].include(localBuffer[pixel]);localBuffer[pixel].clear();
localBuffer[pixel].include(pixel,entry.rendMode);}}}
–21–
5APPLICATIONS
}
FOREACHpixelinlocalBuffer{
globalBuffer[pixel].include(localBuffer[pixel]);}
image=globalBuffer.warp();}
PerformanceTwo-levelvolumerenderingnotonlyallowsforusingindi-vidualrenderingtechniques,transferfunctions,andcompositingmodesforsegmentedobjects,butalsostrivesforinteractivity.Severalpartsoftheim-plementationenhancetheperformanceoftherenderingprocesssignificantly:•Clipping.Asindicatedabove,thestructureofthevoxelarraysallowsforstraight-forwardclipping:VoxelstobeclippedawaycanbemovedbeyondthelastVisibleboundarywithineachrenderlistsegment.•Emptyspaceskipping.Objectsmaynotspanthewholeofthevolume.Theresultingemptyvoxelscanbeskippedbyexcludingthemfromthepreprocessedvoxelarrays.
•Projection.Insteadofusingexpensiveraycasting,theshear-warpap-proximationisused.Voxelsarenotinterpolated,butprojectedontoexactlyonepixel.
•Shading.Duringpreprocessing,thegradientofeachvoxelinpolarcoordinatesiscomputedandquantisedto12bit.Alookuptableisthenassembledthatmapsagivengradienttoitslightingintensity.ThisintensitymaybetheresultofPhongshadingwithafixedroughnesscoefficientandambientlighting.
5Applications
Hauseretal.[HMBG01]considertwoexamplesofvolumevisualizationinwhichtwo-levelvolumerenderingresultsinimprovedimagequalitywhilemaintainingareasonablelevelofinteractivity.Theirfindingsarebrieflydescribedinthefollowingtwosubsections.
5.1MedicalDataVisualization
Experimentsonmedicalvolumedatahaveshownthatdifferentkindsoftissuerequiredifferentrenderingmethods.Two-levelvolumerenderingmaybeof
–22–
5.2DynamicalSystemVisualization5APPLICATIONS
Figure5:Left:ConventionalDVRrendition.Right:Two-levelvolumeren-dering,withDVRbeingusedfortheskullandMIPforthevessels.Onlythelatterclearlyresolvesbothvessels(focus)andskull(context).
particularhelpwhenrenderingcomplexvolumescontainingseveraldistinctobjectsofdifferentphysicaltype.
DVRhasbeensuccessfullyappliedtotissuetransitions.Itemphasizesthe3Dstructureandshapeofanobject,aswellasprovidingsufficientdepthinformation.
MIP,incontrast,hasprovenespeciallyusefulwhenrenderingmorecom-plexsystemssuchaswholeorgans.Inthesecases,DVRtendstooverloadimageswhereasMIPfocusesontheimportantpartsofthedata.
Two-levelvolumerenderingnowallowstheusertoselectindividualun-derlyingrenderingtechniquesforthedifferenttypesofobjects.TheexampleinFig.5showshowtherenditionofaskullwasimprovedbytwo-levelvol-umerendering[HMBG01].Bothimageswererenderedinlessthan200msonordinaryconsumerhardwarein2001.
5.2DynamicalSystemVisualization
Inspiredbyeconomics,Hauseretal.haveinvestigatedadiscretedynamicalsystem.Itisdescribedbythefinitedifferenceequationxt+1=fp(xt),wherext∈X⊆Rn,t∈N0,isastatevectorwhoseevolutionisspecifiedbyatransitionfunctionfp:X→Xbasedonaparametervectorp∈Π⊆Rm.Analysisisconcernedwiththesequenceofstates(xt)t∈N0.
•Forgivenx0andp,theattractingsetisthestate,orsetofstates,thesystemarrivesatinthelongrun.
–23–
6DISCUSSION
•Foragivenattractingsetandaparametervectorp,thebasinofat-tractionisthesetofcorrespondinginitialconditionsx0.Abasinisabasinofattractionwhoseattractingsetliesinsideitself.
Atypicalrenderingtaskis,giventhatseveralattractingsetscoexist,tovisualizetheboundarybetweentheirsurroundingbasins.Hauseretal.havefoundthatparticularlyexpressiveimagescanbegeneratedwhenusingMIPfortheattractingsetandDVRforthebasins’boundaries.
6Discussion
Two-levelvolumerenderinghasthepotentialofimprovingimagequalityinadistinctway:Itgeneratesimagesinwhichdifferentobjectsaremoreeasilydistinguishablethanwithasinglerenderingmethodonitsown.Inaddition,theimplementationpresentedbyHauseretal.showsreasonableinteractivityduetoanumberofperformanceoptimizations.
Morefundamentally,two-levelvolumerenderingoffersaprincipledwayofseparatelyprocessingobjectsofwhichonlyrawsegmentationinformationisknown.Thisway,itcombinesthepartialstrengthsofthetworenderingmethodsdescribedinsection3.ComparedtoMIP,theproblemofdisplayingseveralstructuressimultaneouslyisovercome;multiplestructuresaretrulymerged.ComparedtoDVR,asolutiontotheproblemofoverloadedpicturesisproposed;innerstructuresarefusedwithanouterhullwhichhasafairlyuniformtransparency,makingtheinnerobjectstandoutclearly.
PracticalapplicationshaveshownthatparticularlyconvincingresultscanbeobtainedwithasettinginwhichDVRisusedforinnerstructuresandMIPfortheoutercontext.
Thedisadvantagesoftwo-levelvolumerenderingareduetoitsincreasedcomplexity.Trackingtwobuffersinparallelimpliesbothadditionalcompu-tationalcostsandfurthermemoryusage.ItalsomovesthealgorithmfurtherawayfromwhatisnativelysupportedbytypicalGPUs.
Toallowforboth,theideaofalternatingbetweenafullyfeaturedtwo-levelvolumerenderingandtheoptiontostepbacktotheusageofasin-glebufferinwhichvoxelprojectionsareaccumulatedhasbeenproposedbyHadwigeretal.[HBH03].
Two-levelvolumerenderinghasbeendevelopedfurtherinanumberofsubsequent,relatedpublications.Hadwigeretal.takethetechniquetohardwarelevel[HBH03].Mlejnekincorporatesitinaframeworkforin-teractivevolumerenderingofflowsimulationdata[Mle03].Doleischet
–24–
REFERENCESREFERENCES
al.considertheinteractivespecificationofhigh-dimensionalfeaturesinsim-ulationdata[DGH03].Bruckneretal.usetwo-levelvolumerenderinginconjunctionwithvolumeillustration[BGKG05].
Otherresearchers,suchasZhouetal.arguethateventwo-levelvolumerenderinglackstheabilitytountanglestructuressufficientlyforillustrationpurposes[ZHT02].Theyfocusonnon-photorealisticeffectsinstead.Nomattertowhatextentrenderingtechniquesareadvanced,however,thequestionwhichmethodstousecanhardlybedecidedsolelyonthegroundsoftheirrespectiveadvantagesanddisadvantages.Instead,italsostronglydependsonwhattypeofdataisgiven(e.g.MRI),whatstructuretheobjectsrepresent(e.g.complextissuevs.simplebones),andwhattherenderingobjectivesare(e.g.overview,specificdetails,orfocusandcontext).
Thisindicatesthespectrumofgeneraldifficultiesin3Dimaging[Udu00],aboveandbeyondthequestionsofvisualizationmethods(section2.1)andparameters(section2.2).Ontheonehand,difficultiesarerelatedtoobjectdefinition.Thisinvolvesdeterminingandminimizingthevolumeofinterest,filteringthedata,interpolatingdensitiestoacertainlevelofdiscretization,combiningimagesofthesameobjectsystemfromdifferentmodalities,andsegmentingphysicallydisparatestructures.Ontheotherhand,generaldiffi-cultiesarerelatedtoissuesofvalidation.Assessingarenditionqualitativelymeanstorateitsvisualmanifestationofphysicalpropertiesintheunderly-ingvolume.Validatingquantitativelyreferstothemeasurementofphysicalreliability,visualaccuracy,andoverallefficiency.
Inthiscontext,two-levelvolumerenderingcanbeunderstoodasatech-niquetoimprovethequalitativevalidationofpreprocessedsegmentation.Two-levelvolumerenderinghasbeenshowntobeasimpleyetpowerfulwayofcombiningtheadvantagesofexistingrenderingtechniqueswhicharenotlimitedatalltoDVRandMIP.Itswiderangeofexistingandpotentialapplicationsmakeitanexcellentcandidateforbothimprovedsupportingraphicsboardsandincreasedusageinpracticalrenderingapplications.
References
[BGKG05]S.Bruckner,S.Grimm,A.Kanitsar,andM.E.Gr¨oller.Illustra-tivecontext-preservingvolumerendering.Proc.ofEuroVis’05,
pages69–76,2005.
–25–
REFERENCES[DGH03]
REFERENCES
HelmutDoleisch,MartinGasser,andHelwigHauser.Interactivefeaturespecificationforfocus+contextvisualizationofcomplexsimulationdata.InVISSYM’03:Proceedingsofthesympo-siumonDatavisualisation2003,pages239–248,Aire-la-Ville,Switzerland,Switzerland,2003.EurographicsAssociation.
[EHK+06]KlausEngel,MarkusHadwiger,JoeM.Kniss,ChristofRezk-Salama,andDanielWeiskopf.Real-timevolumegraphics.AKPeters,Ltd.,2006.[ER00]
D.EbertandP.Rheingans.Volumeillustration:Non-photorealisticrenderingofvolumemodels.ProceedingsofIEEEVisualization,pages195–202,2000.
M.Hadwiger,C.Berger,andH.Hauser.High-qualitytwo-levelvolumerenderingofsegmenteddatasetsonconsumergraphicshardware.ProceedingsofIEEEVisualization,14:301–308,2003.
[HBH03]
[HMBG01]H.Hauser,L.Mroz,G.-I.Bischi,andE.Gr¨oller.Two-levelvol-umerendering.IEEETransactionsonVisualizationandCom-puterGraphics,7:242–252,2001.[MAB+97]J.Marks,B.Andalman,P.A.Beardsley,W.Freeman,S.Gibson,
J.Hodgins,T.Kang,B.Mirtich,H.Pfister,W.Ruml,K.Ryall,J.Seims,andS.Shieber.Designgalleries:Ageneralapproachtosettingparametersforcomputergraphicsandanimation.Pro-ceedingsofACMSTGGRAPH,pages389–400,1997.[Mle03][Pfi04][Sim91][Udu00][ZHT02]
MatejMlejnek.Feature-basedvolumerenderingofsimulationdata.Technicalreport,VRVisResearchCenter,Vienna,2003.H.Pfister.ModerneVolumenvisualisierung.InformationTech-nology,46:117–122,2004.
KarlSims.Artificialevolutionforcomputergraphics.ComputerGraphics,25:319–328,1991.
J.K.Udupa.3Dimaging:Principlesandapproaches,chapter1,pages1–74.CRCPress,2edition,2000.
JianlongZhou,ManfredHinz,andKlausD.Tonnies.Hybridfocalregion-basedvolumeredneringofmedicaldata.InBildver-arbeitungf¨urdieMedizin,pages113–116,2002.
–26–
因篇幅问题不能全部显示,请点此查看更多更全内容