天利考试信息网 www.tl100.com 天时地利 考无不胜
盐城市2008/2009学年度高三第一次调研考试
数 学
(总分160分,考试时间120分钟)
参考公式:线性回归方程的系数公式为
bxynxy(xx)(yy)iiiii1nnnxi12inx2i1(xx)ii1n,aybx.
2一、填空题:本大题共14小题,每小题5分,计70分.不需
写出解答过程,请把答案写在答题纸的指定位置上. 1.已知角的终边过点P(-5,12),则cos=____▲____. 2.设(3i)z10i(i为虚数单位),则|z|=____▲____. 3.如图,一个几何体的主视图与左视图都是边长为2的正方形,其俯视图是直径为2的圆,则该几何体的表面积为____▲____.
主视图左视图x0,y04.设不等式组x2所表示的区域为A,现在区域
y2A中任意丢进一个粒子,则该粒子落在直线y____▲____.
俯视图开始 第3题 S←0 1x上方的概率为2i←1 输入ai 5. 某单位为了了解用电量y度与气温x0C之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
i← i +1 气(0C)
温
8
1
3 24
4
1
0 3
8
1
1
-S←S +(aia)2 i ≥ 8 ? 否 用电量(度)
3
4
6是 S ← S / 8 ˆbxa中b2,预测当气温为由表中数据得线性回归方程y输出S 结束 第7题
天利考试信息网 www.tl100.com 天时地利 考无不胜
40C
时,用电量的度数约为____▲____.
x2的解为x0,则关于x的不等式x2x0的最大整数解为6.设方程2lnx7____▲____.
7.对一个作直线运动的质点的运动过程观测了8次,得到如下表所示的数据.
观
测次数i
观
测数据ai 0 1 3 3 4 6 7 8
在上述统计数据的分析中,一部分计算见如图所示的算法流程图(其中a是这8个数据的平均数),则输出的S的值是____▲____.
8.设P为曲线C:yx2x1上一点,曲线C在点P处的切线的斜率的范围是[1,3],则点P纵坐标的取值范围是____▲____.
9.已知an是等比数列,a22,a48,则a1a2a2a3a3a4anan1=____▲____. 10.在平面直角坐标平面内,不难得到“对于双曲线xyk(k0)上任意一点P,若点P在x轴、y轴上的射影分别为M、N,则PMPN必为定值k”.类比于此,对于双
x2y2曲线221(a0,b0)上任意一点P,类似的命题为:____▲____.
ab2211.现有下列命题:①命题“xR,xx10”的否定是“xR,xx10”;② 若Ax|x0,Bx|x1,则A(ðRB)=A;③函数
f(x)sinx(是偶函数的充要条件是k(kZ);④若非零向量
2||ab,|则b与(ab)的夹角为 60º.其中正确命题的序号有a,b满足|a||b____▲____.(写出所有你认为真命题的序号)
x2y212.设A,F分别是椭圆221(ab0)的左顶点与右焦点,若在其右准线上存在点
abP,使得线段PA的垂直平分线恰好经过点F,则椭圆的离心率的取值范围是
____▲____.
13.如图,在三棱锥PABC中, PA、PB、PC两两垂直,且PA3,PB2,PC1.设M是底面ABC内一点,定义
Pf(M)(m,n,p),其中m、n、p分别是三棱锥MPAB、 三棱锥MPBC、三棱锥MPCA的体积.若
AMB第13题
C
天利考试信息网 www.tl100.com 天时地利 考无不胜
11af(M)(,x,y),且8恒成立,则正实数a的最小值为____▲____. 2xy14.若关于x的不等式x22xt至少有一个负数解,则实数t的取值范围是____▲____.
二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,
请把答案写在答题纸的指定区域内. 15. (本小题满分14分) 已知在ABC中,cosA (Ⅰ)求tan2A; (Ⅱ)若sin(6,a,b,c分别是角A,B,C所对的边. 32B)22,c22,求ABC的面积. 3
16. (本小题满分14分)
如图,在四棱锥PABCD中,侧面PAD底面ABCD,侧棱PAPD,底面ABCD是直角梯形,其中BC//AD,BAD90,AD3BC,O是AD上一点.
(Ⅰ)若CD//平面PBO,试指出点O的位置; (Ⅱ)求证:平面PAB平面PCD.
0PAODB C 第16题
17. (本小题满分15分)
如图,某小区准备在一直角围墙ABC内的空地上植造一块“绿地ABD”,其中AB长为定值a,BD 长可根据需要进行调节(BC足够长).现规划在ABD的内接正方形BEFG内种花,其余地方种草,且把种草的面积S1与种花的
CS1面积S2的比值称为“草花比y”.
S2(Ⅰ)设DAB,将y表示成的函数关系式; (Ⅱ)当BE为多长时,y有最小值?最小值是多少?
DFGAE第17题
B
天利考试信息网 www.tl100.com 天时地利 考无不胜
18. (本小题满分15分)
已知C过点P(1,1),且与M:(x2)2(y2)2r2(r0)关于直线xy20对称.
(Ⅰ)求C的方程;
(Ⅱ)设Q为C上的一个动点,求PQMQ的最小值;
(Ⅲ)过点P作两条相异直线分别与C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
19. (本小题满分16分)
(Ⅰ)试确定t的取值范围,使得函数f(x)在2,t上为单调函数; (Ⅱ)求证:nm;
已知函数f(x)(x23x3)ex定义域为2,t(t2),设f(2)m,f(t)n.
f'(x0)2(t1)2,并确定这(Ⅲ)求证:对于任意的t2,总存在x0(2,t),满足x0e3样的x0的个数.
20. (本小题满分16分) 在正项数列an中,令Sni1n1.
aiai1(Ⅰ)若an是首项为25,公差为2的等差数列,求S100; (Ⅱ)若Snnp(p为正常数)对正整数n恒成立,求证an为等差数列;
a1an122(Ⅲ)给定正整数k,正实数M,对于满足a1的所有等差数列an, ak1M求Tak1ak2a2k1的最大值.
盐城市2008/2009高三第一次调研考试
数学附加题
(总分40分,考试时间30分钟)
21.[选做题] 在A、B、C、D四小题中只能选做2题,每小题
10分,计20分.请把答案写在答题纸的指定区域内. A.(选修4—1:几何证明选讲)
第21题(A)
天利考试信息网 www.tl100.com 天时地利 考无不胜
如图,ABC是⊙O的内接三角形,PA是⊙O的切线,
PB交AC于点E,交⊙O于点D,若PEPA, ABC60,PD1,BD8,求BC的长.
B.(选修4—2:矩阵与变换)
二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (Ⅰ)求矩阵M的逆矩阵M1;
(Ⅱ)设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.
C.(选修4—4:坐标系与参数方程)
在极坐标系中,设圆3上的点到直线cos3sin2的距离为d,求d的最大值.
D.(选修4—5:不等式选讲)
111100设a,b,c为正数且abc1,求证:(a)2(b)2(c)2.
abc3
[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内. 22.(本小题满分10分)
如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°. (Ⅰ)求点A到平面PBD的距离; (Ⅱ)求二面角A—PB—D的余弦值. O
第22题
23. (本小题满分10分)
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
2.现在甲、乙两人从袋7
天利考试信息网 www.tl100.com 天时地利 考无不胜
中轮流摸取1球,甲先取,乙后取,然后甲再取,„„,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用表示取球终止时所需要的取球次数.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求随机变量的概率分布及数学期望E; (Ⅲ)求甲取到白球的概率.
盐城市2008/2009高三第一次调研
数学参考答案
一、填空题:本大题共14小题,每小题5分,计70分. 1. 53 2. 10 3.6 4. 5.68 6. 4 7. 7 8.
4133[,3] 42n9.(14) 10. 若点P在两渐近线上的射影分别为M、N,则PMPN必为
3a2b2定值2
ab21911.②③ 12.,1 13.1 14.,2
24
二、解答题:本大题共6小题,计90分. 15.
解
:
(
Ⅰ
)
因
为
c6Aos3,∴
sinA33,则
tanA ∴
2„„„„„„„„„„„„„„„„(4分) 22tanA22„„„„„„„„„„„„„„„„„„„„„„„„„„1tan2A)
由
tan2A„„„(7分) (
Ⅱ
22sin(B)23,得
cosB223,∴
sinB 则
1„„„„„„„„„„„„„„„„(9分) 3 天利考试信息网 www.tl100.com 天时地利 考无不胜
sinCsin(AB)sinAcosBcosAsinB„„(11分) 由
正
弦
定
理
,
得
6 „„„„„„„„„„„„„„3,
∴
acsinA2sinCABC的面积为
122„„„„„„„„„(14分) acsiBn2316. (Ⅰ)解:因为CD//平面PBO,CD平面ABCD,且平面ABCD平面PBOBO, S所以
BO//CD„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
„(4分)
又BC//AD,所以四边形BCDO为平行四边形,则BCDO„„„„„„„„„„„„„„(6分) 而AD3BC,故点O的位置满足
AO2OD„„„„„„„„„„„„„„„„„„„„„(7分)
(Ⅱ)证: 因为侧面PAD底面ABCD,AB底面ABCD,且AB交线AD, 所以AB平面PAD,则
ABPD„„„„„„„„„„„„„„„„„„„„„„„„„(10分) 又PAPD,且PA面PAB,AB面PAB,ABPAA,所以
PD平面PAB „„„„(13分) 而PD平面PCD,所以
平面PAB平面PCD„„„„„„„„„„„„„„„„„„„(14分)
tan,所以ABD的面积为17. 解:(Ⅰ)因为BD12atan((0,))„„„„„„„„„(2分) 22FGDGtatant 设正方形BEFG的边长为t,则由,得, ABDBaatanatant解得,则1taa2tan2„„„„„„„„„„„„„„„„„„„„„„„„„(6分) S2(1tan)2 所
以
n1212a2tan2S1atanS2atan22(1tan)2,则
S1(1tan)2y1 „„„„„„(9分)
S22tan (
Ⅱ
)
因
为
t1a12)(13分1(t„„„„„)
2tanaa 当且仅当tan1时取等号,此时BE.所以当BE长为时,y有最小值
22y1(2t1antann1,所以
an1„„„„„„„(15分)
天利考试信息网 www.tl100.com 天时地利 考无不胜
18. 解:(Ⅰ)设圆心
Ca2b22022,解得(a,b),则b21a2a0„„„„„„„„„„„„„(3分) b02则圆C的方程为x2y2r2,将点P的坐标代入得r2,故圆C的方程为x2y22„„„(5分) (Ⅱ)设,则,且Q(x,y)x2y22PQMQ(x1,y1)(x2,y2)„„„„„„„„„„(7分)
22=xyxy4=xy2,所以PQMQ的最小值为4(可由线性规划或三角代换
求得)„(10分)
(Ⅲ)由题意知, 直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y1k(x1),
PB:y1k(x1),由
y1k(x1)22xy2,得
(1k2)x22k(1k)x(1k)220 „„„(11分)
因为点P的横坐标x1一定是该方程的解,故可得
k22k1xA„„„„„„„„„„„„(13分)
1k2k22k1xB 同理,,所以21kyyk(xAkx1k)kxx(A1)B kABBB1=kOPxBxAxBxAxBxAABOP 所以,直线和一定平
行„„„„„„„„„„„„„„„„„„„„„„„„„„„„(15分)
19. (Ⅰ)解:因为
2Af(x)(x23x3)ex(2x3)exx(x1)ex„„„„„„„„„„„„„(2分)
由f(x)0x1或x0;由f(x)00x1,所以f(x)在(,0),(1,)上递增,
在(0,1)上递
减 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(4分)
欲f(x)在2,t上为单调函数,则
2t0„„„„„„„„„„„„„„„„„„„„„(5分)
(Ⅱ)证:因为f(x)在(,0),(1,)上递增,在(0,1)上递减,所以f(x)在x1处取得
极小值e(7分) 又f(2)13e,所以f(x)在2,上的最小值为2ef(2) „„„„„„„„„„„„„(9分) 从而当t2时,f(2)f(t),即
mn„„„„„„„„„„„„„„„„„„„„„„(10分)
天利考试信息网 www.tl100.com 天时地利 考无不胜
f'(x0)f'(x0)222222xx(t1)(t1)xx(Ⅲ)证:因为,所以即为, 0000x0x03e3e222222 令g(x)xx(t1),从而问题转化为证明方程g(x)xx(t1)=0
33在(2,t)上有解,并讨论解的个
数„„„„„„„„„„„„„„„„„„„„„„„„„„(12分) 因为
2221g(2)6(t1)2(t2)(t4),g(t)t(t1)(t1)2(t2)(t1),
3333所以
①当t4或2t1时,g(2)g(t)0,所以g(x)0在(2,t)上有解,且只有一解 „„(13分) ②当1t4时,g(2)0且g(t)0,但由于g(0)2(t1)20, 3所以g(x)0在(2,t)上有解,且有两
解 „„„„„„„„„„„„„„„„„„„„„„(14分)
③当t1时,g(x)x2x0x0或x1,所以g(x)0在(2,t)上有且只有一解;
2当t4时,g(x)xx60x2或x3,
所以g(x)0在(2,4)上也有且只有一
解„„„„„„„„„„„„„„„„„„„„„„(15分)
f'(x0)22(t1)综上所述, 对于任意的t2,总存在x0(2,t),满足, x0e3且当t4或2t1时,有唯一的x0适合题意;当1t4时,有两个x0适合题
意„„„„(16分)
(说明:第(Ⅱ)题也可以令(x)xx,x(2,t),然后分情况证明域内,并讨论直线y数)
20.(Ⅰ)解:由题意得,
22(t1)2在其值32(t1)2与函数(x)的图象的交点个数即可得到相应的x0的个3aai1i12aiai1,所以
a201a1S100=5„„„„„„„„(4分)
2(
Ⅱ
)
证
:
令
n1,
p1a1a2a1a2,则
p=1„„„„„„„„„„„„„„„„„„(5分)
所以Sn(2),
(2)—(1),得i1nn1np(n1)p11=(1),Sn1=
a1an1a1an2aiai1aiai1i1(n1)n1—=, a1an2a1an1an1an2
天利考试信息网 www.tl100.com 天时地利 考无不胜
化简得
(nan1nana1n—
(
3
)
得
)(3)„„„„„„„„„„„„„„„„„„„„„„„(7分)
(n2)an2(n1)an3a1(n1)(4),(4)
an1an32 „„„„an(n1)(9分) 2在(3)中令
n1,得a1a32a2,从而
公
差
an为等差数
列 „„„„„„„„„„„„„„„„(10分)
(Ⅲ)记,tak1为
d,则
Tak1ak2a2k1=(k1)t则
k(k1)d„„„„„„„(12分) 2Tkd2222t,Ma1ak1t(tkd) k124kd14kd2T2(t)2(4t3kd)2(t)2()„„„„„„„„„„„„102101025k1„„„„(14分)
Mat34t3kdk1(k1)10M10则T,当且仅当,即时等号成2kd22M(t)d4M52k10立„„„„„(16分)
数学附加题部分
21.A.(几何证明选讲选做题)
解:因为PB=PD+BD=1+8=9,PA=PD·BD=9,PA=3,AE=PA=3,连结AD,在ADE中,得
2AD7„„(5分) 又AEDBEC,所以
BC27 „„„„„„„„„„„„„„„„„„„„„„„„„(10分)
B.(矩阵与变换选做题)
bbaa解: (Ⅰ)设 ,则有 ddcc所
以
b11a =,11cd22201=2, a,cb解2d1ba,且c1d得
a1b2 „„„„„„„„„„„„„„„„„„„„„„(4分) c3d421 所以M=,从34211M=3 1 „„„„„„„„„„„„„„„„„„„„„„„„(7分)
-22而
天利考试信息网 www.tl100.com 天时地利 考无不胜
x12xx2y(Ⅱ)因为 且m:2xy4, y34y3x4y所以2(x+2y)-(3x+4y)=4,即x+4 =0,这就是直线l程 „„„„„„„„„„„„„„„(10分) C.(坐标系与参数方程选做题)
解:将极坐标方程3转化为普通方
的方
程:
x2y29„„„„„„„„„„„„„„„„„(2分)
cos3sin2可化为
x3y2„„„„„„„„„„„„„„„„„„„„„„(5分) 在x2y29上任取一点A3cos,3sin,则点A到直线的距离为
d3cos33sin226sin(300)22:
,它的最大值为
4 „„„„„„„„„„„(10分)
D.(不等式选讲选做题) 证=
左
12221111111(111)[(a)2(b)2(c)2][1(a)1(b)1(c)]23abc3abc„(5分)
111111111100[1()]2[1(abc)()]2(19)2„„„„„„„3abc3abc33„(10分)
22.解:以OA、OB所在直线分别x轴,y轴,以过O且垂直平面ABCD的直线为z轴,建立空间直角坐标系,则A(3,0,0),B(0,1,0),C(3,0,0),D(0,1,0),P(3,0,2),
DB(0,2,0),AP(0,0,2)„(2分)
(Ⅰ)设平面PDB的法向量为n1(x1,y1,z1),DP(3,1,2), 由
DB(0,2,0),
23n1DP03x1y12z10,得.令z11,得n1(,0,1)3n1DB02y10DA(3,1,0),
,
所
|nDA|221=„„„„„„„„„„„„„„„„„„点A到平面PDB的距离d17|n1|以
„(5分)
(Ⅱ)设平面ABP的法向量n2(x2,y2,z2),AP(0,0,2),AB(3,1,0),
APn2由 ABn23x232x2003,得.令y21,得y21,n2(,1,0),
30z03x2y202 天利考试信息网 www.tl100.com 天时地利 考无不胜
n1n27 cosn1,n2,而所求的二面角与n1,n2互补, 7|n1||n2|所
以
二
面
角
A—PB—D的余弦值为
7„„„„„„„„„„„„„„„„„„„„„„„„„(10分) 7n(n1)22Cn(n1)223.解:(Ⅰ)设袋中原有n个白球,由题意知:n,所以767C72762n(n1)=12,
n3),即袋中原有解得n=4(舍去4个白
球„„„„„„„„„„„„„„„„„„„„„„„(3分)
(Ⅱ)由题意,的可能取值为4„„„„„„„„„„„„„„„„„„„„„„„„(4分)
1
,
2
,
3
,
4342324432141P(1);P(2);P(3);P(4)776776535765435,
所以,取球次数的分布列为:
P
„„(6分)
1
472
273
4354
135
„
E8„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5„„(8分)
(Ⅲ)因为甲先取,所以甲只有可能在第1次和第3次取球,记“甲取到白球”的事件为A,
P(A)P(\"1\"则或 “=3”),所以
P(A)P(1)P(3)
24„„„„„„„„„(10分) 35
因篇幅问题不能全部显示,请点此查看更多更全内容