您的当前位置:首页正文

nanoimprint

来源:帮我找美食网
Imprintofsub-25nmviasandtrenchesinpolymers

StephenY.Chou,PeterR.Krauss,andPrestonJ.Renstrom

NanoStructureLaboratory,DepartmentofElectricalEngineering,UniversityofMinnesota,Minneapolis,Minnesota55455

͑Received17July1995;acceptedforpublication14September1995͒

Ananoimprintprocessthatpressesamoldintoathinthermoplasticpolymerfilmonasubstratetocreateviasandtrencheswithaminimumsizeof25nmandadepthof100nminthepolymerhasbeendemonstrated.Furthermore,theimprintprocesshasbeenusedasalithographyprocesstofabricatesub-25nmdiametermetaldotarraysofa100nmperiodinalift-offprocess.Itwasfoundthatthenanostructuresimprintedinthepolymersconformcompletelywiththegeometryofthemold.Atpresent,theimprintedsizeislimitedbythesizeofthemoldbeingused;withasuitablemold,theimprintprocessshouldmoldsub-10nmstructureswithahighaspectratioinpolymers.Thenanoimprintprocessoffersalowcostmethodformassproducingsub-25nmstructuresandhasthepotentialtobecomeakeynanolithographymethodforfuturemanufacturingofintegratedcircuitsandintegratedoptics.©1995AmericanInstituteofPhysics.

Thereisagreatneedtodeveloplow-costtechnologiesformassproducingsub-50nmstructuressincesuchtechnol-ogycanbringenormousimpacttomanyareasofengineeringandscience.Notonlywillthefutureofsemiconductorinte-gratedcircuitsbeaffected,butalsothecommercializationofmanyinnovativedeviceswhicharefarsuperiortocurrentdevicesishingedonthepossibilityofsuchtechnology.Scan-ningelectronbeamlithographyhasdemonstrated10nmli-thographyresolution.1,2But,usingitformassproductionofsub-50nmstructuresseemseconomicallyimpracticalduetoinherentlowthroughputinaserialprocessingtool.X-raylithography,whichcanhaveahighthroughput,hasdemon-strated50nmlithographyresolution,3butthex-raylithogra-phytoolsareratherexpensiveanditsabilityformasspro-ducingsub-25nmstructuresisyettobeseen.Furthermore,lithographiesbasedonscanningprobeshaveproduced10nmstructuresinaverythinlayerofmaterials.However,thepracticalityofsuchlithographiesasamanufacturingtoolishardtojudgeatthispoint.

Imprinttechnologyusingcompressionmoldingofther-moplasticpolymersisalowcostmassmanufacturingtech-nologyandhasbeenaroundforseveraldecades.Featureswithsizesgreaterthan1␮mhavebeenroutinelyimprintedinplastics.Compactdiskswhicharebasedonimprintingofpolycarbonateareoneexample.Otherexamplesareim-printedpolymethylmethacrylate͑PMMA͒structureswithafeaturesizeontheorderof10␮m͑Ref.4͒andmoldedpolyesterpatternswithfeaturedimensionsofseveraltensofmicrons.5However,ithasneverbeentestedwhethersub-25nmstructureswithhighaspectratioscanbeimprintedintopolymers.Furthermore,thepossibilityofreplacingthecon-ventionallithographiesusedinsemiconductorintegratedcir-cuitmanufacturingwithimprinttechnologywasneverraised.

Inthispaper,wewilldemonstratethatimprinttechnol-ogycanproduceviasandtrencheswith25nmminimumfeaturesizeand100nmdepthinthinpolymers,hasthepotentialtoproduce10nmstructures,andcanbeusedasthenanolithographyprocessinintegratedcircuitfabrication.

AsshowninFig.1,inthenanoimprintprocess,amoldis

3114

Appl.Phys.Lett.67(21),20November1995

pressedintoathinthermoplasticpolymerfilmonasubstratethatisheatedaboveitsglasstransitiontemperature.Abovethattemperaturethepolymerbehavesasaviscousliquidandcanflowunderapressure,therebyconformingtothemold.Themoldcanbemadeofmetals,dielectrics,orsemiconduc-tors.Inourexperiments,silicondioxidemoldswereusedexclusively.Themoldconsistsofathicklayerofsilicondioxideonasiliconsubstrate.Themoldispatternedwithdotsandlineswithaminimumlateralfeaturesizeof25nmusingelectronbeamlithographyandetched250nmintotheSiO2layerusingreactiveionetching͑RIE͒.

Thepolymerusedforthenanoimprintexperimentisa55nmthickPMMAfilmspunonasiliconwafer.PMMAwaschosenforseveralreasons.First,PMMAdoesnotadherewelltotheSiO2moldduetoitshydrophilicsurface.Goodmoldreleasepropertiesareessentialforfabricatingnano-scalefeatures.Second,theshrinkageofPMMAislessthan0.5%forlargechangesoftemperatureandpressure.6

Duringtheimprinting,boththemoldandPMMAwerefirstheatedtoatemperatureof200°CwhichishigherthantheglasstransitiontemperatureofPMMA,105°C.4ThenthemoldwascompressedagainstthesampleandheldthereuntilthetemperaturedroppedbelowthePMMA’sglasstransitiontemperature.Variouspressureshavebeentested.Itwasfoundthattheoptimumpressureisabout1900psi.Atthatpressure,thepatternonthemoldcanbefullytransferredintothePMMA.Atmuchlowerpressures,thepatterncannotbetransferredintothePMMAcompletely.Usinghigherpres-surecausedboththesubstrateandthemoldtobowinward,resultingincontactbetweenthePMMAandconcaveregionsoftheSiO2mold.Also,atsignificantlyhigherpressuresthenanoscaleSiO2featuresonthemoldwerefoundtobreakoff.

Figure2showsascanningelectronmicroscope͑SEM͒imageof25nmdiameterdotswitha120nmperiodim-printedintoaPMMAfilm.Wehavenotbeenabletodetectanyvariationbetweenmoldfeaturesizeandimprintedfea-turesizeduetoshrinkageofPMMA.Inadditiontothenanometerfeatures,themoldalsohasfeaturesaslargeastensofmicronswhichhavebeenimprintednicelyintothePMMAaswell.

©1995AmericanInstituteofPhysics

0003-6951/95/67(21)/3114/3/$6.00

Downloaded¬08¬Mar¬2009¬to¬210.13.109.85.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://apl.aip.org/apl/copyright.jsp

FIG.3.SEMmicrographofa60nmwidetrenchimprintedintoPMMA.ThePMMAlinesare100nmtall.

FIG.1.Schematicofnanoimprintlithographyprocess.

Figure3showsthecrosssectionofa60nmwidetrench100nmdeepimprintedintoaPMMAfilm.TheinitialPMMAfilmwas55nmthick,butmoldingdisplacedPMMAresultinginathickerPMMAfilmoutsideoftheviasandtrenches.Moreover,PMMAlineswith50nmwidth,175nmspacingand150nmheighthavebeenimprinted,butfelloverduetopooradhesiontothesiliconsubstrate.Nonetheless,SEMexaminationshowsthatthesidewallsofimprintedPMMAlinesconformwiththemoldandarethereforeverystraight.Fromourobservations,itisclearthatthefeaturesizeimprintedislimitedbyourmoldsize.FromthetextureoftheimprintedPMMA,itappearsthat10nmfeaturescanbeimprinted.

ThePMMAfilmpatternedwithnanoimprinttechnologywasusedtoreplacethenanolithographyinthefabricationofnanoscalemetalfeaturesthroughalift-offtechnique.AfternanoimprintofPMMA,O2RIEwasusedtoremove10nmofthePMMAtomakesurethebottomsoftheimprintedviaandtrenchregionswerefreeofanyPMMAresidue.Next,5nmoftitaniumand15nmofgoldwereevaporatedontothewafers.ThewaferswerethensoakedinacetonetoliftoffmetalswhichwereontheremainingPMMA.Figure4showsanSEMmicrographof25nmdiameterTi/Audotswitha120nmperiodwhichwerefabricatedusingnanoimprintli-thography.Dotarrayswith100nmperiodhavealsobeenfabricated,buthavea5nmvariationindotsizeduetovaria-tionsofthemold.

Theuseofnanoimprintasalithographyprocessisverysignificant.First,asdiscussedpreviously,thereisnootherlow-costandhighthroughputlithographytechnologywiththeresolutionofthenanoimprintlithography.Second,nanoimprintlithographywillnothavethebackscatteringand

FIG.2.SEMmicrographofdotpatternimprintedintoPMMA.Thedotshavea25nmdiameterand120nmperiod.

Appl.Phys.Lett.,Vol.67,No.21,20November1995

FIG.4.SEMmicrographofTi/Audotpatternonasiliconsubstratefabri-catedusingnanoimprintlithographyandalift-offprocess.Thedotshavea25nmdiameterand120nmperiod.

Chou,Krauss,andRenstrom

3115

Downloaded¬08¬Mar¬2009¬to¬210.13.109.85.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://apl.aip.org/apl/copyright.jsp

interferenceproblemsencounteredinotherlithographieswhichdegradetheresolution.Therefore,nanoimprintlithog-raphyissuitablefornanolithographyonhighatomicnumbermaterialsubstrates.Webelievethatwithaproperselectionofthepolymerandmoldmaterialsandanoptimizationofthepressingconditions,thestickinganddefectproblemsassoci-atedwiththetraditionalcontactprintingcanbeavoided,makingthenanoimprintlithographyaviablemanufacturingtechnology.

Insummary,wehavedemonstratedananoimprintingtechnologythatcanimprintsub-25nmviasandtrenchesinaPMMAfilmusingnanoimprintlithographywithaSiO2mold.Nanoimprinthasreplacedlithographytoliftoffarraysof25nmdiameterTi/Audots.Thenanoimprintprocessshouldbeabletoproduce10nmfeatureswithhighaspect

ratiosandprovideauniquelowcosttechnologyinmassproducingsub-25nmstructures.Finally,nanoimprintlithog-raphyhasthepotentialtobeusedasakeynanolithographyprocessinfutureintegratedcircuitsandintegratedoptics.

1

A.N.Broers,J.M.Harper,andW.W.Molzen,Appl.Phys.Lett.33,392͑1978͒.2

P.B.FischerandS.Y.Chou,Appl.Phys.Lett.62,2989͑1993͒.3

K.Early,M.L.Schattenburg,andH.I.Smith,MicroelectronicEng.11,317͑1990͒.4

M.Harmening,W.Bacher,P.Bley,A.El-Kholi,H.Kalb,B.Kowanz,W.Menz,A.Michel,andJ.Mohr,inProceedings,IEEEMicroElectroMe-chanicalSystems͑1992͒,p.202.5

H.LiandS.D.Senturia,inProceedingsof199213thIEEE/CHMTIn-ternationalElectronicManufacturingTechnologySymposium͑1992͒,p.145.6

I.Rubin,InjectionMolding͑Wiley,NewYork,1972͒.

3116Appl.Phys.Lett.,Vol.67,No.21,20November1995Chou,Krauss,andRenstrom

Downloaded¬08¬Mar¬2009¬to¬210.13.109.85.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://apl.aip.org/apl/copyright.jsp

因篇幅问题不能全部显示,请点此查看更多更全内容

Top