January14,2002
InTheFoundationsofArithmeticandTheBasicLawsofArithmetic,Fregeheldtheviewthatnumber-termsrefertoobjects.1Laterinhislife,however,heseemstohavebeenopentootherpossibilities:
Sinceastatementofnumberbasedoncountingcontainsanassertionaboutaconcept,inalogicallyperfectlanguageasentenceusedtomakesuchastatementmustcontaintwoparts,firstasignfortheconceptaboutwhichthestatementismade,andsecondlyasignforasecond-orderconcept.Thesesecond-orderconceptsformaseriesandthereisaruleinaccordancewithwhich,ifoneoftheseconceptsisgiven,wecanspecifythenext.Butstillwedonothaveinthemthenumbersofarithmetic;wedonothaveobjects,butconcepts.Howcanwegetfromtheseconceptstothenumbersofarithmeticinawaythatcannotbefaulted?Oraretheresimplynonumbersinarithmetic?Couldthenumbershelptoformsignsforthesesecond-orderconcepts,andyetnotbesignsintheirownright?2
ToillustrateFrege’spoint,letusconsiderthenumber-statement‘therearethreecats’.Itmightbeparaphrasedinafirst-orderlanguageas:3(1)(∃3x)[Cat(x)].
Ifitslogicalformistobetakenatfacevalue,(1)canbedividedintotwomainlogicalcomponents:first,thepredicate‘Cat(...)’,whichforFregereferstothe(first-order)conceptcat;and,second,thequantifier-expression‘(∃3x)[...(x)]’,whichforFregereferstoasecond-orderconcept(specifically,thesecond-orderconceptwhichistrueofthefirst-orderconceptsunderwhichprecisely3objectsfall).4Significantly,Fregewouldregardneitherofthesecomponentsasreferringtoanobject.
Letusnowconsideraclosecousinof‘therearethreecats’,namely,‘thenumberofthecatsisthree’.Thissentencemightbeparaphrasedas:(2)thenumberofthecats=3.
1
Ifitslogicalformistobetakenatfacevalue,(2)cannotbedividedintoapredicateandaquantifier-expression,like(1).Instead,Fregewouldtake‘thenumberofthecats’and‘3’tobenames,referringtonumbers(whichheregardedasobjects).
Fregesawadeepconnectionbetweensentenceslike(1)—inwhichsomethingispredicatedofaconcept—andsentenceslike(2)—inwhichsomethingispredicatedofthenumberassociatedwiththatconcept.Anefforttoaccountforthisconnectionwasamainthemeinhisphilosophyofarithmetic.But,afterthediscoverythatBasicLawVleadstoinconsistency,hefoundmuchreasonfordissatisfactionwithhisoriginalproposal.Asevidencedbythequotedpassage,henolongerfeltconfidentaboutthepossibilityofgettingfromconceptstotheirnumbers‘inawaythatcannotbefaulted’.
Towardstheendofthepassage,Fregeconsidersanalternative:theviewthattherereallyarenonumbersinarithmetic,andthat—appearancestothecontrary—numeralsarenotnamesofobjects.Theydonoteveninstantiatealegitimatelogicalcategory,theyaremerelyorthographiccomponentsofexpressionsstandingforsecond-orderconcepts.Thegrammaticalformofasentencelike(2)isthereforenotindicativeofitslogicalform.Presumably,‘thenumberofthecats=3’istobedividedintotwomainlogicalcomponents.First,theexpression‘...cats’,whichreferstothe(first-order)conceptcat;and,second,theexpression‘thenumberofthe...=3’,whichreferstoasecond-orderconcept(specifically,thesecond-orderconceptwhichistrueofthefirst-orderconceptsunderwhichprecisely3objectsfall).Thenumeral‘3’ismerelyanorthographiccomponentof‘thenumberofthe...=3’,inmuchthesamewaythat‘cat’isanorthographiccomponentof‘caterpillar’.Theoutermostlogicalformof(2)isthereforeidenticaltothatof(1).If,inaddition,itturnsoutthatthelogicalformof‘thenumberofthe...=3’correspondstothatof‘(∃3x)[...(x)]’,thenthelogicalformof(1)isidenticaltothatof(2).
ItisunfortunatethatFregeneverspelledouthisunofficialproposal(asweshallcallit)inanydetail.Inparticular,hesaidnothingabouthowfirst-orderarithmeticmightbeunderstood.Luckily,HaroldHodeshasdevelopedanddefendedaversionoftheUnofficialProposal.5OnHodes’sreconstruction,asentence‘F(n)’ofthelanguageoffirst-orderarithmeticistoberegardedasabbreviatingahigher-ordersentence‘(FX)((∃nx)[Xx])’,where‘(∃nx)[...x]’referstoasecond-orderconcept,and‘(FX)(...X...)’referstoathird-orderconcept.Forinstance,thefirst-ordersentence‘Prime(19)’abbreviatesacertainhigher-ordersentence‘(PrimeX)((∃19x)[Xx])’.
OnHodes’sversionoftheUnofficialProposal,quantifiedsentencesinvolvequantificationoversecond-orderconcepts.Morespecifically,theyinvolvequantificationoverfinitecardinalityobject-quantifiers:thereferentsofquantifier-expressionsoftheform‘(∃nx)[...x]’.6Thus,thefirst-order‘∃zPrime(z)’wouldabbreviatetheresultofreplacingthepositionoccupiedby‘(∃19x)[...x]’in‘(PrimeX)((∃19x)[Xx])’
2
byavariablerangingoverfinitecardinalityobject-quantifiers,andbindingthenewvariablewithaninitialexistentialquantifier.Hodes’saccountoffirst-orderarithmeticthereforerequiresthird-orderquantification.Andtheobviousextensiontonth-orderarithmetic(forn≥2)wouldcallfor(n+2)th-orderquantification.Suchlogicalresourcesareincreasinglyproblematic.7
Hereweshallseethatmoremodestresourceswilldo.WewilldevelopaversionoftheUnofficialProposalwithinasecond-orderlanguage,andshowthatitcanbeusedtoaccountfornthorderarithmetic(foranyfiniten).This,initself,isasurprisingresult.Butitisespeciallyimportantinlightofthefactthat,althoughtheuseofhigher-orderlanguagesisoftenconsideredproblematic,recentworkhasdonemuchtoassuageconcernsaboutcertainsecond-orderresources.8WewillalsoseethattheUnofficialProposalhasimportantapplicationsinthephilosophyofmathematics.
1ATransformation
Wewillseethatthereisageneralmethodfor‘nominalizing’arithmeticalformulasassecond-orderformulascontainingnomathematicalvocabulary.Asanexample,consider‘Thenumberofthecatsisthenumberofthedogs’.Thissentencemightbenominalizedas‘Thecatsarejustasmanyasthedogs’,or:
xˆ[Cat(x)]≈xˆ[Dog(x)],9
where‘≈’expressesone-onecorrespondence.10
Considernowthesentence‘thenumberofthecatsis3’.Itcanbenominalizedas:3f(ˆx[Cat(x)]);
wherenumeral-predicatesaredefinedintheobviousway:•0f(X)≡df∀v¬X(v);
•1f(X)≡df∃W∃v(0f(W)∧¬W(v)∧∀w(X(w)↔(W(w)∨w=v)));•2f(X)≡df∃W∃v(1f(W)∧¬W(v)∧∀w(X(w)↔(W(w)∨w=v)));•etc.
Thissortofnominalizationcaneasilybegeneralized.Inordertodoso,weworkwithinatwo-sortedsecond-orderlanguageLcontainingthefollowingvariables:first-orderarithmeticalvariables,‘m1’,‘m2’,...,monadicsecond-orderarithmeticalvariables‘M1’,‘M2’,...,first-ordergeneralvariables,‘x1’,‘x2’,
3
nn
,....11Weassume...,and,fornapositiveinteger,n-placesecond-ordergeneralvariablesX1,X2
thatLhasbeenenrichedwithasinglehigher-levelpredicate‘N’takingamonadicsecond-ordergeneralvariableinitsfirstargument-placeandafirst-orderarithmeticalvariableinitssecondargument-place.12Thewell-formedformulasofLaredefinedintheusualway,withtheprovisothatanatomicformula
1
cancontainarithmeticalvariablesonlyifitisoftheformmi=mj,MimjorN(Xi,mj).13
Ontheintendedinterpretation,arithmeticalvariablesaretakentorangeoverthenaturalnumbers,
1andgeneralvariablesaretakentohaveanunrestrictedrange.14Inaddition,‘N(Xi,mj)’istruejustin1casethenumberoftheXisismj.Consider‘Thenumberofthecatsisthree’asanexample.Itcanbe
formalizedinLas:
x1[Cat(x1)],m1)∧3(m1));(3)∃m1(N(ˆ
where,again,thenumberpredicatesaredefinedintheobviousway:•0(m)≡df∃W(0f(W)∧N(W,m));•1(m)≡df∃W(1f(W)∧N(W,m));•2(m)≡df∃W(2f(W)∧N(W,m));•etc.15
Arithmeticalpredicatessuchas‘Successor’,‘Sum’and‘Product’caneasilybedefinedintermsof‘N’andpurelylogicalvocabulary.16So,withoutappealingtoarithmeticalprimitivesbeyond‘N’,thewholeofpureandappliedsecond-orderarithmeticcanbeexpressedwithinL.
Itwillbeconvenienttointroducethefollowingdefinitions,whicharecouchedinpurelylogicalvocabulary:
Definition1F(X)≡df
¬∃W(∃w(¬Ww∧∀v(Xv↔(Wv∨v=w)))∧W≈X)
(thereareatmostfinitelymanyXs)
Definition2∃fXφ(X)≡df
∃X(F(X)∧φ(X))
4
Ournominalizationmethodcannowbegeneralizedtoencompassthewholeoffirst-orderarithmeticbywayofthefollowingtransformation:17
•Tr(∃mi(φ))=∃fZiTr(φ);•Tr(mi=mj)=Zi≈Zj;•Tr(N(Xi,mj))=Xi≈Zj.
Intuitively,thetransformationworksbyreplacingtalkofthenumberoftheFsbytalkoftheFsthem-selves.Asanexample,letusreturnto‘thenumberofthecatsisthree’.ItcanbeformalizedinLas:
x1[Cat(x1)],m1)∧3(m1));∃m1(N(ˆwhichTrconvertsto:
∃fZ1(ˆx1[Cat(x1)]≈Z1∧3f(Z1));or,equivalently:
3f(ˆx1[Cat(x1)]).
Forfurtherillustration,notethat‘thenumberofthecatsisthenumberofthedogs’canbeformalizedinLas:
∃m1[N(ˆx1[Cat(x1)],m1)∧(N(ˆx1[Dog(x1)],m1)].whichTrconvertsto:
ˆ1[Dog(x1)]≈Z1],∃fZ1[ˆx1[Cat(x1)]≈Z1∧xor,equivalently:
ˆ1[Cat(x1)]≈xxˆ1[Dog(x1)].
Itisworthemphasizingthatmixedidentitystatementssuchas‘mi=xj’arenotwell-formedformulasofL,soourtransformationhasnotbeendefinedforthem.Intuitively,thismeansthatthetransformationisundefinedforsentencesalongthelinesof‘Thenumber2isJuliusCaesar’,whichdonotexpressinternalpropertiesofamathematicalstructure.WecallsuchsentencesCaesarsentences.
5
Thisisasitshouldbe.TheviewthatnumbersareobjectsledFregetotheuncomfortablequestionofwhetherthenumberbelongingtotheconceptcatis,forinstance,JuliusCaesar.Butinthecontextofournominalizations,suchquestionsneverarise,becausenumber-termsdonotrefertoobjects.‘Thenumberbelongingtotheconceptcatisthenumberbelongingtotheconceptdog’isnominalizedas‘theobjectsfallingundertheconceptcatareinone-onecorrespondencewiththeobjectsfallingundertheconceptdog’,and‘thenumberbelongingtotheconceptcatis3’isnominalizedas‘therearethreeobjectsfallingundertheconceptcat’.
ThequestionwhetherJuliusCaesaristhenumberbelongingtotheconceptcatisn’tonlyuncomfort-ablebecauseitappearstobenonsensical.ItalsounderscoresaproblemPaulBenacerrafmadefamous,thatifmathematicaltermsrefertoobjects,thennothinginourmathematicalpracticedetermineswhichobjectstheyreferto.18AremarkablefeatureoftheUnofficialProposalisthatitavoidsBenacerraf’sProblemaltogether.Itwould,however,beamistaketoconcludefromthisthattheUnofficialPro-posalisthelastwordonBenacerraf’sProblem,sincetheinscrutabilityofreferencepervadesfarbeyondarithmetic.
2Second-orderArithmetic
OntheassumptionthatthereareinfinitelymanyobjectsintherangeofthegeneralvariablesofL,acertainkindofcodingcanbeusedextendTrsothatitencompassessecond-orderarithmetic(thankshereto...).Intuitively,thecodingworksbyrepresentingeacharithmeticalconceptMibyadyadicrelationRi.Specifically,werepresentthefactthatanumbermjfallsunderMibyhavingitbethecasethatsomeconceptWunderwhichpreciselymjobjectsfallbesuchthatsomeindividualvbearsRitoallandonlytheindividualsfallingunderW.19
Weimplementthecodingbyenrichingourtransformationwiththefollowingtwoclauses:20•Tr(∃Mi(φ))=∃RiTr(φ);
ˆ[Ri(v,u)]).u[Ri(v,u)])∧Zj≈u•Tr(Mimj)=∃v(F(ˆ
3Higher-orderArithmetic
Itispossibletoexpressany(non-Caesar)formulainthelangaugeofn-thorderarithmeticasaformulaofLforwhichTrisdefined,providedthattherangeofthegeneralvariablescontainsatleastn−2manyobjects.
6
Considerthecaseofthird-orderarithmetic.Intuitively,weproceedbypairingeachsecond-orderconceptαiwithatriadicrelationSiinsuchawaythatasetofnumbersMjfallsunderαijustincasethereissomeobjectxwiththefollowingproperty:
(∗)Foranynumbern,Mjnholdsjustincasethereissomeobjectysuchthatthereareexactlynvs
satisfyingSi(x,y,v).21
Sothatthe‘empty’second-orderconcept(i.e.thesecond-orderconceptunderwhichnofirst-orderconceptfalls)mayberepresented,weletSirepresentthefactthatMjfallsunderαionlyifthereisanobjectxsuchthatitisboththecasethat(∗)issatisfied,andthatthereisnoysuchthatSi(x,y,x).The‘empty’second-orderconceptcanthenberepresentedbyanyrelationSisuchthatforeveryxthereissomeysuchthatSi(x,y,x).
Formally,if‘αi’isamonadicthird-ordervariablerestrictedtothenaturalnumbers,22wedefineatransformationCasfollows:23
•C(∃αiφ)=∃SiC(φ)
•C(αi(Mj))=
∃x[∀y(¬Si(x,y,x))∧∀m(Mjm↔∃y(N(ˆv[Si(x,y,v)],m)))]
Ontheassumptionthattherangeofthegeneralvariablescontainsleastcontinuummanyobjects,itiseasytoverifythat,foranyformulaofthird-orderarithmetic,φ,onwhichCisdefined,φ↔C(φ).Byusingn-adicrelationsinsteadoftriadicones,thisprocedurecanbeextendedton-thorderarithmetic.And,ontheassumptionthattherangeofthegeneralvariablescontainsatleastn−2objects,itwillbethecasethat,foranyformulaofn-thorderarithmetic,φ,onwhichCisdefined,φ↔C(φ).
4NumberingNumbers
Onewouldliketobeabletonumbercats.Butonewouldalsoliketobeabletonumbernumbers.Onewouldliketosay,forexample,thatthenumberofprimessmallerthantenisfour.And,unfortunately,anexpressionsuchas‘N(mˆi[Prime-less-than-10(mi)],mj)’isnotwell-formedformulaofLbecause‘N’canonlyadmitofageneralvariableinitsfirstargument-place.24Toremedythesituation,wemaydefineapredicate‘NN(Mi,mj)’,byappealingtothesamesortofcodingasbefore.
7
Informally,‘NN(Mi,mj)’istoabbreviateaformulaofLtotheeffectthatthereisabinaryrelationRwiththefollowingproperties:
•Foranynumbern,MinholdsjustincasesomememberofthedomainofRispairedwithexactlyn+1objects;25
•everymemberofthedomainofRispairedwithfinitelymanyobjects;
•foranyxandyinthedomainofR,iftheobjectspairedwithxareasmanyastheobjectspairedwithy,thenx=y;
•thedomainofRcontainsexactlymjobjects.26
Thenewpredicateallowsustosaythatthenumberofprimessmallerthantenisfour.Italsoallowsustosaythatthenumberofprimessmallerthanthreeisthenumberofobjectsfallingundertheconceptcat:
x1[Cat(x1)],m2)).27∃m2(NN(mˆ1[Prime-less-than-6(m1)],m2)∧N(ˆ
And,asdesired,ouranyexpressionoftheformNN(Mi,mj)isdefinitionallyequivalenttoawell-formedformulaofL.
5FormulasofLandtheirTransformations
Ournominalizationmethodisnowcomplete.28Caesarsentencesaside,anyformulainthelanguageofn-thorderappliedarithmeticcanbeexpressedasaformulaofLforwhichTrisdefined.AndtheresultofapplyingTrisalwaysaformulawithnomathematicalvocabulary.
Wemaynowgiveageneralcharacterizationoftherelationshipbetweenaformulaanditstrans-formation.Inordertodoso,considerthefollowingfiveprinciples,allofwhichholdontheintendedinterpretationofL:
1.∀X(∃m(N(X,m))→∃!m(N(X,m)))
(IfmisanumberoftheXs,thenmisthenumberoftheXs.)2.∀m∃XN(X,m)
(Givenanynumberm,therearesomeobjectssuchthatmbelongstothoseobjects.)3.∀X(∃m(N(X,m))↔F(X))
(AnumberbelongstotheXsjustincasethetheyareatmostfiniteinnumber.)
8
4.∀X∀Y[∀m(N(X,m)→(Y,m))↔X≈Y)].
(AnumberbelongingtotheXsisalsoanumberbelongingtotheYsjustincasetheXsareinone-onecorrespondencewiththeYs.)5.∃X¬F(X)
(Thereareinfinitelymanythingsintherangeofthegeneralvariables)
LetAbetheconjunctionofthesefiveprinciples,andletφTrbeanotationalvariantforTr(φ).Itispossibletoshowthat,foranysentenceφofL,29
Aφ↔φTr
where‘’expressesderivabilityinastandardsecond-orderdeductivesystem.Inordertoprovethisresult,afewpreliminariesarenecessary.Definition3N(Ri,Mj)≡df
u[Ri(v,u)],m))).∀m(Mjm↔∃v(N(ˆ
Definition4Ifmi1,...,mik,Mj1,...,Mjlarearithmeticalvariables,welet
mi1,...,mik,Mj1,...,Mjl
abbreviatethefollowing:
(N(Zi1,mi1)∧...∧N(Zik,mik)∧N(Rj1,Mj1)∧...∧N(Rjl,Mjl)).
Definition5IfφisaformulaofL,withfreearithmeticalvariablesmi1,...,mik,Mj1,...,Mjl,weletφ↔∗φTrabbreviatetheuniversalclosureofthefollowing:
mi1,...,mik,Mj1,...,Mjl→(φ↔φTr).
Ifφcontainsnofreearithmeticalvariables,weletφ↔∗φTrbeφ↔φTr.Finally,weproceedtoourmainresult:
TheoremIfφisawell-formedformulaofL,thenAφ↔∗φTr.
9
Seeappendixforproof.[AninterestingfeatureoftheproofisthatthefifthconjunctofAisrequiredonlytoensuretheadequacyofthecodingforsecond-ordervariablessetforthinsection2.Inparticular,thefifthconjunctisnotrequiredtoproveaversionofthetheoremrestrictedtofirst-orderarithmetic.Ontheotherhand,withoutitsfifthconjunct—or,alternatively,withoutaprincipleguaranteeingtheexistenceofinfinitelyobjectsintherangeofthearithmeticalvariables—thestandardarithmeticalaxiomsdonotfollowfromA.]
Corollary1(CompletenessofAwithrespecttoappliedarithmetic.)IfφisasentenceofLandTisthesetoftruesentencesofLwhichdonotcontain‘N’,theneitherA∪TφorA∪T¬φ.Proof:LetφbeasentenceofL.ItiseasytoverifythatφTrdoesnotcontain‘N’.Therefore,eitherTφTrorT¬φTr,sinceeitherφTr∈Tor¬φTr∈T.But,sinceφcontainsnofreevariables,itfollowsfromourTheoremthatAφ↔φTr.So,eitherA∪TφorA∪T¬φ.
Corollary2SupposeAholdswhen‘N(X,m)’isinterpretedas‘thenumberoftheXsism’.Letφ(mi)beawell-formedformulaofL,andletψ(Zi)beTr(φ(mi)).IfthereareatmostfinitelymanyFs,thenφ(mi)istrueofthenumberoftheFsjustincaseψ(Zi)istrueoftheFs.30Proof:Immediatefromtheorem.
6InterpretingSecond-OrderLanguages
Wehavetakencaretoensurethattheoutputsofourtransformationarealwayssecond-orderformulas.Soaninterpretationforsecond-orderquantifiersisallweneedtomakesenseofournominalizations.Fregetooksecond-orderquantifierstorangeoverconcepts,butFregeanconceptsmightbeconsideredproblematiconthegroundsthattheyconstitute‘items’whicharenotobjects.
Notanyalternativewilldo.OnQuine’sinterpretation,second-orderlogicis‘set-theoryinsheep’sclothing’.Sowewouldhavesucceededineliminatingnumber-termsfromarithmeticonlybymakinguseofset-terms.And,fromtheperspectiveoftheUnofficialProposal,set-termsarepresumablynolessproblematicthannumber-terms.Norisanyprogressmadebyinterpretingsecond-orderlogicasBooloshassuggested.31Someofourdefinitionsmakeessentialuseofpolyadicsecond-orderquantifiers,whichBoolostreatsasranging(plurally)overorderedn-tuples.And,again,fromtheperspectiveoftheUnofficialProposal,ordered-pair-termsarepresumablynolessproblematicthannumbers-terms.SomedeviousnessisneededtoavoidFregeanconceptswithoutbetrayingthespiritoftheUnofficialProposal.Onewayofdoingsoisbydefiningsecond-orderquantifiersimplicitly,intermsofanopen-10
endedschema,asinMcGee’s‘Everything’.Anotherisbyinterpretingsecond-orderlogicasinRayoandYablo’s‘NominalismthroughDe-Nominalization’.Alternatively,onemightarguethatgenuinesecond-orderquantificationistobeacceptedasaprimitive.
7Applications
Frege’sUnofficialProposal—theviewthatnumber-statementsaretobeeliminatedinfavoroftheirtrans-formations—cantakeseveraldifferentforms,dependingonthesortofeliminationonehasinmind.OnanapproachlikeHodes’s,number-statementsaretakentoabbreviatetheirtransformations.Asaresult,number-termsdonotrefertoobjects,andthereisroomforrejectingtheexistenceofnumbersaltogether.TheUnofficialProposalmightthereforeprovideabasisforanominalistphilosophyofarithmetic.Itshouldbenoted,however,thatunlesstheuniverseisinfinite,φTrwillnotalwayshavethetruth-valuethatφreceivesonitsstandardinterpretation.Inordertoavoidinfinityassumptions,anominalistmightclaimthatanumber-statementφabbreviates‘necessarily,(ξ→φTr)’,where‘ξ’isasentencestatingthatthereareinfinitelymanyobjects,suchas‘∃X¬F(X)’.Ontheplausibleconditionthatitispossiblefortheuniversetoinfinite,‘necessarily,(ξ→φTr)’istrueifandonlyifφistrueonitsstandardinterpretation.32
AdifferentapproachtowardstheUnofficialProposalmightservethepurposesoftheNeo-FregeanProgram,championedbyBobHaleandCrispinWright.Neo-FregeansbelievethatHume’sPrincipleallowsustoreconceptualizethestateofaffairswhichisdescribedbysayingthattheFsareasmanyastheGs,andthat,onthereconceptualization,thatsamestateofaffairsisrightlydescribedbysayingthatthenumberoftheFsisthenumberoftheGs.33AversionoftheUnofficialProposalmightallowNeo-Fregeanstomakethemoregeneralclaimthateverynumber-statementφdescribes—ontheappropriatereconceptualization—thestateofaffairswhichisotherwisedescribedbyφTr.
EveniftheUnofficialProposalistobeabandonedaltogether,itwouldbeamistaketoneglecttheconnectionbetweennumber-statementsandtheirtransformationsdescribedinsection5.Fornon-nominalistaccountsofmathematicsmustyieldtheresultthatthereisnospecialmysteryabouthowonemightcometoknowwhatthetruth-valuesofmathematicalsentencesare.But,ontheassumptionthatAcanbeknowntobetrue,ourtheoremensuresthatthisgoalcanbeachievedforthecaseofpureandappliedarithmetic.LetφbeanarithmeticalsentenceofL.WhenAisknown,itfollowsfromourtheoremthatoneisinapositiontoderiveφ↔φTr.So,insofarasoneisinapositiontoknowthetruthofφTr,whichcontainsnoarithmeticalvocabulary,oneisalsoinapositiontoknowthetruthofφ.34(Of
11
course,onemaynotbeinapositiontoknowthetruthofφTr.Inthatcaseoneisnot,forallthathasbeensaid,inapositiontoknowφ.Butthatcannotbeusedasanobjectionagainstanon-nominalistaccountofmathematicalknowledge.Suchanaccountisrequiredtoshowthatmathematicalknowledgeisnomoremysteriousthannon-mathematicalknowledge,notthatallknowledgeisunproblematic.)
8Logicism
OurtheoremprovidesuswithapartialvindicationofLogicism.Forwheneverφisasentenceofpurearithmetic(appropriatelyexpressedinL),φTrisasentenceofpuresecond-orderlogic.Moreover,Trallowsustoexpressformulasofpurearithmeticasformulasofpuresecond-orderlogicinawaywhichpreservescompositionality.35ThiswouldconstituteacompletevindicationofLogicismifitweretrueasamatterofpurelogicthat,foreveryappropriateφ,Tr(φ)hasthetruth-valuethatφwouldreceiveonitsstandardinterpretation.Unfortunately,thegeneralequivalenceintruth-valueholdsonlyiftheuniverseisbigenough,andthesizeoftheuniverseisnotamatterofpurelogic.Trdoesn’treducearithmetictologic—butitcomesclose.
12
Appendix
Thetheoremisprovedbyinductiononthecomplexityofφ.Trivialcasesareomitted.
•Assumeφ=N(Xi,mj).Thenφ↔∗φTristheuniversalclosureof
N(Zj,mj)→(N(Xi,mj)↔Xi≈Zj),
whichisanimmediateconsequenceofA(firstandfourthconjuncts).•Assumeφ=mi=mj.Thenφ↔∗φTristheuniversalclosureof
(N(Zi,mi)∧N(Zj,mj))→(mi=mj↔Zi≈Zj),
whichisanimmediateconsequenceofA(firstandfourthconjuncts).•Assumeφ=Mjmi.Thenφ↔∗φTristheuniversalclosureof
mi,Mj→(Mjmi↔∃v(F(ˆu[Ri(v,u)])∧Zj≈uˆ[Ri(v,u)])).
Wemakethefollowingtwoassumptions:
N(Zi,mi),N(Rj,Mj).
Recallthat(2)isshorthandfor
∀m(Mjm↔∃v(N(ˆu[Ri(v,u)],m))),
fromwhichitfollowsimmediatelythat
(Mjmi↔∃v(N(ˆu[Ri(v,u)],mi))).
From(1)and(4),togetherwithA(firstandfourthconjuncts),itfollowsthat
13
(1)(2)
(3)
(4)
Mjmi↔∃v(Zj≈uˆ[Ri(v,u)]).
Andfrom(1)and(5),togetherwithA(first,thirdandfourthconjuncts),itfollowsthat
(5)
Mjmi↔∃v(F(ˆu[Ri(v,u)])∧Zj≈uˆ[Ri(v,u)]).
Dischargingassumptions(1)and(2)weget:
(6)
ˆ[Ri(v,u)])).mi,Mj→(Mjmi↔∃v(F(ˆu[Ri(v,u)])∧Zj≈u
Andthedesiredresultfollowsfrom(7)byuniversalgeneralization.
(7)
•Assumeφ=∃miψ(mi).Letψhavefreearithmeticalvariablesmi1,...,mik,Mj1,...,Mjl
distinctfrommi.36Thenφ↔∗φTristheuniversalclosureof:
mi1,...,mik,Mj1,...,Mjl→(∃miψ(mi)↔∃fZiψTr(Zi)).
Byinductivehypothesis,thefollowingisprovablefromHP:
mi,mi1,...,mik,Mj1,...,Mjl→(ψ(mi)↔ψTr(Zi)).
Wemakethefollowingtwoassumptions:
(1)
mi1,...,mik,Mj1,...,Mjl,
(2)
∃miψ(mi).
ByA(secondandthirdconjuncts),itfollowsfrom(3)that
(3)
∃mi∃W(F(W)∧N(W,mi)∧ψ(mi)).
So,byexistentialinstantiation,
(4)
14
F(C)∧N(C,c)∧ψ(c).
Butby(1)wehave:
c,mi1,...,mik,Mj1,...,Mjl→(ψ(c)↔ψTr(C)).
Andfrom(2),(5)and(6)wemayconclude
ψTr(C).
Thus,makingagainuseof(5),
∃fZiψTr(Zi),
and,dischargingassumption(3),
∃miψ(mi)→∃fZiψTr(Zi).
Conversely,assume
∃fZiψTr(Zi).
Byexistentialinstantiation:
F(C)∧ψTr(C).
Itisaconsequenceof(10)andA(thirdconjunct)that
∃mN(C,m).
From(12)weobtainthefollowing,byexistentialinstantiation:
N(C,c).15
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
Butby(1)wehave:
c,mi1,...,mik,Mj1,...,Mjl→(ψ(c)↔ψTr(C)).
Andfrom(2),thesecondconjunctof(11),(13)and(14)wemayconclude
(14)
ψ(c).
Thus,
(15)
∃miψ(mi),
and,dischargingassumption(10),
(16)
∃fZiψTr(Zi)→∃miψ(mi).
Finally,wecombine(9)and(17),anddischargeassumption(2):
(17)
mi1,...,mik,Mj1,...,Mjl→(∃nmiψ(mi)↔∃fZiψTr(Zi)).
Thedesiredresultisthenobtainedbyuniversalgeneralization.
(18)
•Assumeφ=∃Mjψ(Mj).Letψhavefreearithmeticalvariablesmi1,...,mik,Mj1,...,Mjl
distinctfromMj.37Thenφ↔∗φTristheuniversalclosureof:
mi1,...,mik,Mj1,...,Mjl→(∃Mjψ(Mj)↔∃RjψTr(Rj)).
Byinductivehypothesis,thefollowingisprovablefromHP:
Mj,mi1,...,mik,Mj1,...,Mjl→(ψ(Mj)↔ψTr(Rj)).
Wemakethefollowingtwoassumptions:
(1)
mi1,...,mik,Mj1,...,Mjl,
(2)
16
∃Mjψ(Mj).
ByA(second,thirdandfifthconjuncts),itfollowsfrom(3)that
∃Mj(∃R(N(R,Mj))∧ψ(Mj)).
So,byexistentialinstantiation,
N(P,C)∧ψ(C).
Butby(1)wehave:
C,miTr1,...,mik,Mj1,...,Mjl→(ψ(C)↔ψ(P)).
Andfrom(2),(5)and(6)wemayconclude
ψTr(P).
Thus,
∃RjψTr(Rj),
and,dischargingassumption(3),
∃Mjψ(Mj)→∃RjψTr(Rj).
Conversely,assume
∃RjψTr(Rj).
Byexistentialinstantiation,
ψTr(P).
Thefollowingisalogicaltruth:
17
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
∃M∀m(Mm↔∃v(N(ˆu[P(v,u)],m))).
But(12)isdefinitionallyequivalentto
∃MN(P,M).
So,byexistentialinstantiation,
N(P,C).
Butby(1)wehave:
C,mi1,...,mik,Mj1,...,Mjl→(ψ(C)↔ψTr(P))
Andfrom(2),(11),(14)and(15)wemayconclude
ψ(C).
Thus,
∃Mjψ(Mj),
and,dischargingassumption(10),
∃RjψTr(Rj)→∃Mjψ(Mj).
Finally,wecombine(9)and(18),anddischargeassumption(2):
mi1,...,mik,Mj1,...,Mjl→(∃Mjψ(Mj)↔∃RjψTr(Rj)).
Thedesiredresultisthenobtainedbyuniversalgeneralization.
18
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
Notes
1
Thisisreflectedinhisdefinitionofnumber.See,forinstanceFrege(1884)§67.
NotesforLudwigDarmstaedter,pp.366-7.Ihavesubstituted‘second-order’for‘second-level’.Asusual,‘(∃1x)[φ(x)]’isdefinedas‘∃x(φ(x)∧∀y(φ(y)→x=y))’,and(forn>1)‘(∃nx)[φ(x)]’is
2
3
definedas‘∃x(φ(x)∧(∃n−1y)[φ(y)∧y=x])’.
4
ForFrege,afirst-orderconceptisaconceptthattakesobjectsasarguments,andan(n+1)th-order
conceptisaconceptthattakesnth-orderconceptsasarguments.SeeFrege(18931903),§21.Unlessotherwisenoted,weshalluse‘concept’tomean‘first-orderconcept’.
5
SeeHodes(1984).SeealsoWright(1983)pp.36-40andBostock(1979),volumeIIchapter1.SeeHodes(1990)§3.
Hodes(1990),observation5,offersanominalizationofsecond-orderarithmeticwhichdoesnot
6
7
exceedtheresourcesofsecond-orderlogic.ButitproceedsbyencodingRamseysentences,andisthereforenotaversionofFrege’sUnofficialProposal.
8
SeeBoolos(1984),Boolos(1985a),Boolos(1985b),McGee(2000)andRayoandYablo(2001).Syntactically,anexpressionoftheform‘ˆx[φ(x)]’takestheplaceofamonadicsecond-ordervariable.
9
Buttheresultofsubstituting‘ˆx[φ(x)]’for‘Y’inaformula‘Ψ(Y)’istobeunderstoodasshorthandfor:
∀W(∀x(Wx↔φ(x))→Ψ(W)).
10
Thatis,‘X≈Y’abbreviates
∃R[∀w(Xw→∃!v(Yv∧Rwv))∧∀w(Yw→∃!v(Xv∧Rvw))]
11
Asaprecautionagainstvariableclashes,wedividemonadicsecond-ordergeneralvariablesintwo:the
11X2i—whichweabbreviateZi—willbepairedwithfirst-orderarithmeticalvariables;theX2i+1—
whichweabbreviateXi—willbeusedformoregeneralpurposes.Alsotoavoidvariableclashes,we
2dividedyadicsecond-ordergeneralvariablesintwo:theX2i—whichweabbreviateRi—willbe
19
22
pairedwithsecond-orderarithmeticalvariables;theX2i+1—whichweabbreviateRi—willbeused3formoregeneralpurposes.Finally,wedividetriadicsecond-ordergeneralvariablesintwo:theX2i—3whichweabbreviateSi—willbepairedwiththird-orderarithmeticalvariables;theX2i+1—whichn3
asaterminological—willbeusedformoregeneralpurposes.Forn>3,weuseRiweabbreviateRi
n
variantofXi.Wewillsometimesappealtotheintroductionofunusedvariables.Weemploy‘m’
asanunusedfirst-orderarithmeticalvariable,‘w’,‘v’and‘u’asunusedfirst-ordergeneralvariables,‘M’asanunusedsecond-orderarithmeticalvariable,‘W’,‘V’and‘U’asunusedmonadicsecond-ordergeneralvariables,and,foreachn>1(tobedeterminedbycontext),weemploy‘R’asanunusedn-placesecond-ordergeneralvariable.(Itisworthnotingthatappealtounusedvariablescouldbeavoidedbyrenumberingsubscripts.)Itwilloftenbeconvenientregard‘x’,‘y’,and‘z’asarbitraryfirst-ordergeneralvariablesand‘X’,‘Y’and‘Z’asarbitrary(monadic)second-ordergeneralvariables.
12
Foradiscussionofhigher-orderpredicatesseemy....
1
Formally,thewell-formedformulasofLcanbecharacterizedasfollows:(a)N(Xi,mj)and
13
mi=mjareformulas;(b)foranyn-placeatomicpredicatePotherthan‘N’,P(xi1,...,xin)isa
nformula;(c)MimjandXi(xji,...,xjn)areformulas;(d)ifφandψareformulas,then¬φ,n
φareformulas;and(e)nothingelseisaformula.(φ∧ψ),∃miφ,∃Miφ,∃xiφand∃Xi14
Moreprecisely,first-orderarithmeticalvariablesaretakentorangeoverthenaturalnumbers,and
first-ordergeneralvariablesaretakentohaveanunrestrictedrange.Therangeofthesecond-ordervariablesistobecharacterizedaccordingly.Forinstance,onaFregeaninterpretationofsecond-orderquantification,second-orderarithmeticalvariablesaretakentorangeoverfirst-orderconceptsunderwhichnaturalnumbersfall,andsecond-ordergeneralvariablesaretakentorangeoverfirst-orderconceptsunderwhicharbitraryobjectsfall.
15
Weusenumber-predicatesratherthannumeralsforthesakeofsimplicity,butitisworthnoting
thatournominalizationcouldbecarriedoutevenifLwasextendedtocontainnumerals.Toseethis,notethat—usingstandardtechniques—anyformulaφoftheextendedlanguagecanbetransformedintoanequivalentformulaφ∗oftheoriginallanguageinwhichnumeralshavebeeneliminatedinfavorofcorrespondingnumber-predicates(definedasabove).Onecanthenidentifythenominalizationofφwiththatofφ∗.
16
Thedefinitionsrunasfollows:
20
•Successor(mi,mj)≡df
∀V∀U[(N(V,mi)∧N(U,mj))→∃u(Uu∧wˆ[Uw∧w=u]≈V)];•Sum(mi,mj,mk)≡df
∀V∀U∀W[(N(V,mi)∧N(U,mj)∧N(W,mk)∧∀w(Vw→¬Uw))→wˆ[Vw∨Uw]≈W];•Product(mi,mj,mk)≡df
∀V∀U∀W[(N(V,mi)∧N(U,mj)∧N(W,mk))→∃R[∀v∀u((Vv∧Uu)→∃!w(Ww∧Rvuw))∧∀w(Ww→∃!v∃!u(Vv∧Uu∧Rvuw))]].
17
Theremainingclausesaretrivial:
•Tr(¬φ)=‘¬’Tr(φ);
•Tr(φ∧ψ)=‘(’Tr(φ)‘∧’Tr(ψ)‘)’;•Tr(∃xi(φ))=∃xi(Tr(φ));•Tr(∃Xi(φ))=∃Xi(Tr(φ));•Tr(Xixj)=Xixj;
nn
(φ))=∃Ri•Tr(∃Ri(Tr(φ));nn
(xj1,...,xjn);(xj1,...,xjn))=Ri•Tr(Ri
•Tr(xi=xj)=xi=xj;
n
•Tr(Pnj(xi1,...,xin))=Pj(xi1,...,xin).
18
SeeBenacerraf(1965).
WerepresentthefactthatthenumberzerofallsunderMibyhavingitbethecasethatsomeobject
19
bearsRitonothing.Thus,inordertorepresentthefactthatzerodoesnotfallunderMiwemusthaveitbethecasethateveryobjectbearsRieithertonobjectsforsomen>0fallingunderMi,ortoinfinitelymanyobjects.
20
Polyadicsecond-orderquantificationcanbedefinedasmonadicsecond-orderquantificationover
sequences,whichcanbesimulatedwithinfirst-orderarithmetic.
21
21
WerepresentthefactthatthenumberzerofallsunderMjbyhavingitbethecasethatsomeobject
yissuchthattherearenovssatisfyingSi(x,y,v).Thus,inordertorepresentthefactthatzerodoesnotfallunderMjwemusthaveitbethecasethateveryobjectyiseithersuchthatthattherearenvssatisfyingSi(x,y,v)forsomen>0fallingunderMj,orsuchthatthereareinfinitelymanyvssatisfyingSi(x,y,v).
22
Forinstance,onaFregeaninterpretationofthird-orderquantification,‘αi’rangesoversecond-order
conceptsunderwhichfallfirst-orderconceptsunderwhichfallnaturalnumbers.
23
Theremainingclausesaretrivial.
Inanalogywiththeabove,welettheresultofsubstituting‘mˆi[φ(mi)]’for‘Mj’inaformula
24
‘Ψ(Mj)’beshorthandfor
∀M(∀mi(Mmi↔φ(mi))→Ψ(M)).
25
WerequirethatamemberofthedomainofRbepairedwithn+1objectsratherthannobjects
inordertoaccommodatethefactthatthenumberzeromightfallunderMi,sinceeverymemberofthedomainofRmustbepairedwithatleastoneobject.
26
Moreprecisely,‘NN(Mi,mj)’istoabbreviate:
∃R[∀mk(Mimk↔∃w∃W∃u(Rwu∧∀v(Wv↔(Rwv∧v=u))∧N(W,mk)))∧∀w∀v(Rwv→∃fW∀u(Wu↔Rwu))∧
∀w∀v∀W∀V((∃u(Rwu)∧∀u(Wu↔Rwu)∧∀u(Vu↔Rvu)∧W≈V)→w=v)∧∃W(∀v(Wv↔∃u(Rvu))∧N(W,mj))];formkanunusedvariable.
27
Whereas‘Cat(...)’mayberegardedasanatomicpredicate,‘Prime-less-than-6(...)’abbreviates
acomplexformulaconstructedusingthearithmeticalpredicatesdefinedinfootnote16.
28
Sofarwehaveonlybeenconcernedwiththearithmeticoffinitecardinals.Butitisworthnoting
thatasimilartransformationcouldbeappliedtothelanguageofinfinitecardinalarithmetic.
22
29
HereandinwhatfollowsIassumethat,asaprecautionagainstvariableclashes,φcontainsno
variablesfortheformZi,RiorSi.
30
Infact,theresultisslightlymoregeneral.Supposeφ(mi1,...,min)isaformulaofLandlet
ψ(Zi1,...,Zin)beTr(φ(mi1,...,min));suppose,moreover,thatthereareatmostfinitelymanyF1s,atmostfinitelymanyF2s,...,andatmostfinitelymanyFns.Thenφ(mi1,...,min)istruewhenmi1isthenumberoftheF1s,mi2isthenumberoftheF2s,...,andministhenumberoftheFnsjustincaseψ(Zi1,...,Zin)istruewhentheZi1saretheF1s,theZi2saretheF2s,...,andtheZinsaretheFns.
31
SeeBoolos(1984)andBoolos(1985a).
Formoreonmodalstrategies,seepartIIofBurgessandRosen(1997).Hodesdiscussesamodal
32
strategyinsectionIIIofHodes(1984).
33
SeeWright(1997),sectionI,andHale(1997).
Foramoredetailedtreatmentofthisissueseemy....Itisworthnotingthatthecompleteness
34
ofthesecond-orderDedekind-Peanoaxiomsyieldsasimilarresultforthecaseofpuresecond-orderarithmetic,andthatthequasi-categoricityresultinMcGee(1997)yieldsasimilarresultforthecaseofpureset-theory.
35
UnlikenominalizationintermsofRamseysentences,Trrespectsthelogicalconnectivesandquan-
tifiers:
•Tr(¬φ)=‘¬’Tr(φ),
•Tr(φ∧ψ)=Tr(φ)‘∧’Tr(ψ),•Tr(∃miφ)=∃fZiTr(φ),•Tr(∃Miφ)=∃RiTr(φ).
36
Thecasewhereψhasnofreearithmeticalvariablesdistinctfrommi,andthecasewhereψdoes
notcontainmifreerequiretrivialdifferencesinterminology.Weignorethemforthesakeofbrevity.
37
ThecasewhereψhasnofreearithmeticalvariablesdistinctfromMj,andthecasewhereψdoes
notcontainMjfreerequiretrivialdifferencesinterminology.Weignorethemforthesakeofbrevity.
23
References
Beaney,M.,ed.(1997)TheFregeReader,Blackwell,Oxford.
Benacerraf,P.(1965)“WhatNumbersCouldnotBe,”ThePhilosophicalReview74,47–73.Reprinted
inPaulBenacerrafandHilaryPutnam,PhilosophyofMathematics.
Benacerraf,P.,andH.Putnam,eds.(1983)PhilosophyofMathematics,CambridgeUniversityPress,
Cambridge,secondedition.
Boolos,G.(1984)“ToBeistoBeaValueofaVariable(ortobeSomeValuesofSomeVariables),”The
JournalofPhilosophy81,430–49.ReprintedinGeorgeBoolos,Logic,LogicandLogic.
Boolos,G.(1985a)“NominalistPlatonism,”PhilosophicalReview94,327–44.ReprintedinGeorge
Boolos,Logic,LogicandLogic.
Boolos,G.(1985b)“ReadingtheBegriffsschrift,”Mind94,331–334.ReprintedinGeorgeBoolos,Logic,
LogicandLogic.
Boolos,G.(1998)Logic,LogicandLogic,Harvard,Cambridge,Massachusetts.Bostock,D.(1979)LogicandArithmetic,ClarendonPress,Oxford.
Burgess,J.,andG.Rosen(1997)ASubjectWithNoObject,OxfordUniversityPress,NewYork.Frege,G.(1884)DieGrundlagenderArithmetik.EnglishTranslationbyJ.L.Austin,TheFoundations
ofArithmetic,NorthwesternUniversityPress,Evanston,IL,1980.
Frege,G.(1893/1903)GrundgesetzederArithmetik.Vol1(1893),Vol2(1903).EnglishTranslationby
MontgomeryFurth,TheBasicLawsofArithmetic,UniversityofCaliforniaPress,BerkeleyandLosAngeles,1964.
Frege,G.(1919)“NotesforLudwigDarmstaedter.”ReprintedinMichaelBeaney,TheFregeReader.Hale,B.(1997)“Grundlagen§64,”ProceedingsoftheAristotelianSociety97,243–61.ReprintedinBob
HaleandCrispinWright,TheReason’sProperStudy.
Hale,B.,andC.Wright(2001)TheReason’sProperStudy:EssaystowardsaNeo-FregeanPhilosophy
ofMathematics,ClarendonPress.
Heck,R.,ed.(1997)Language,ThoughtandLogic,ClarendonPress,Oxford.
Hodes,H.T.(1984)“LogicismandtheOntologicalCommitmentsofArithmetic,”JournalofPhilosophy
81:3,123–149.
Hodes,H.T.(1990)“WheredoNaturalNumbersComeFrom?”Synthese84,347–407.
McGee,V.(1997)“HowWeLearnMathematicalLanguage,”PhilosophicalReview106:1,35–68.
24
McGee,V.(2000)“Everything.”InGilaSherandRichardTieszen,BetweenLogicandIntuition.us35:1.Rayo,A.,andS.Yablo(2001)“NominalismThroughDe-Nominalization,”Noˆ
Sher,G.,andR.Tieszen,eds.(2000)BetweenLogicandIntuition,CambridgeUniversityPress,New
YorkandCambridge.
Wright,C.(1983)Frege’sConceptionofNumbersasObjects,AberdeenUniversityPress,Aberdeen.Wright,C.(1997)“TheSignificanceofFrege’sTheorem.”InRichardHeck,LanguageThoughtand
Logic.
25
因篇幅问题不能全部显示,请点此查看更多更全内容