您的当前位置:首页正文

证明题

来源:帮我找美食网


求证:同一条弧所对的圆周角等于它所对圆心角度数的一半.

已知:⊙O中,∠AOB和∠ACB分别是 所对的圆心角和圆周角.

求证:∠AOB=2∠ACB

证明:当圆心O在∠ACB的一条边上时,如图(1),证明方法同课本,这里不在赘述.

当圆心O在∠ACB的外部时,如图(2).联结OC.

∵OC=OB,OC=OA

∴∠OCA=∠OAC,∠OCB=∠OBC

∵∠OCA+∠OAC+∠AOC=180°,∠OCB+∠OBC+∠BOC=180°

∴∠AOC=180°-∠OCA-∠OAC,∠BOC=180°-∠OCB-∠OBC

∴∠AOC=180°-2∠OCA,∠BOC=180°-2∠OCB

∴∠AOC-∠BOC =180°-2∠OCA-180°+2∠OCB

∴∠AOC-∠BOC =2(∠OCB -∠OCA)

∵∠AOC-∠BOC=∠AOB,∠OCB -∠OCA=∠ACB

∴∠AOB=2∠ACB;

当圆心O在∠ACB的内部时,如图(3).联结OC.

∵OC=OB,OC=OA

∴∠OCA=∠OAC,∠OCB=∠OBC

∵∠OCA+∠OAC+∠AOC=180°,∠OCB+∠OBC+∠BOC=180°

∴∠AOC=180°-∠OCA-∠OAC,∠BOC=180°-∠OCB-∠OBC

∴∠AOC=180°-2∠OCA,∠BOC=180°-2∠OCB

∵∠AOC+∠BOC+∠AOB =360°

∴∠AOB=360°-∠AOC-∠BOC

∴∠AOB=360°-180°+2∠OCA-180°+2∠OCB

∴∠AOB=2(∠OCA+∠OCB)

∵∠OCA+∠OCB =∠ACB

∴∠AOB=2∠ACB ;

综上所述,一条弧所对的圆周角等于它所对的圆心角的一半

因篇幅问题不能全部显示,请点此查看更多更全内容

Top