您好,欢迎来到帮我找美食网。
搜索
您的当前位置:首页调幅(平均功率计算)

调幅(平均功率计算)

来源:帮我找美食网
3.2 调幅与双边带调制(AM,DSB)

在线性调制系列中,最先应用的一种幅度调制是全调幅或常规调幅,简称为调幅(AM)。不但在频域中已调波频谱是基带调制信号频谱的线性位移,而且在时域中,已调波包络与调制信号波形呈线性关系。

3.2.1 调幅波时域波形

调幅波的数学表达式为:

s(t)m(t)c(t)

A0cos(0t0)f(t)cos(0t0)

(3-1)

式中,

A0——调制信号m(t)的直流分量

f(t)——调制信号的交流分量

这里利用的载波为单位幅度、角频为固定值

0,0为载波c(t)的初相。

由式(3-1),调幅是对m(t)与c(t)进行乘法运算的结果,为了使图3-3(a)所示交流信号f(t)实现线性地控制载波幅度,需加入直流分量而构成m(t),以确保m(t)0,即:

f(t)maxA0

(3-2)

于是,已调波

sAM(t)的包络完全处于时轴上方,如图3-3(b)所示。

为分析方便,我们先设交流调制信号f(t)为单音信号,即(3-1)可得已调波为:

f(t)Amcos(mtm),由式

sAM(t)[A0Amcos(mtm)]cos(0t0)

(3-3)

A0cos(0t0)Amcos(mtm)cos(0t0)

AmAcos(0m)tmcos(0m)t22

(3-4)

由式(3-2)的条件,为避免产生“过调幅”而导致严重失真,兹定义一个重要参数:

sAM(t)A0cos(0t)AMAm1A0

(3-5)

AM为调幅指数,或调幅深度。为了充分保证不过调,一般AM不超过80%。

AM代入到式(3-3)和(3-4),则有:

sAM(t)A0[1AMcos(mtm)]cos(0t0)

我们将

(3-6)

或:

sAM(t)A0cos(0t)AMA02cos(0m)tAMA02cos(0m)t (3-7)

3.2.2 调幅波的频谱 由公式:

sAM(t)A0cos(0t0)f(t)cos(0t0)

可以直接进行傅立叶变换,得到它的频谱为:

ej0ej0SAM()[2πA0(0)F(0)][2πA0(0)F(0)]22

(3-8)

式中

F()为f(t)的频谱,即f(t)F(),是任意调制信号的时-频变换对。

图3-5示出了与图3-3 AM时域波形相对应的频谱(幅度谱)。

AM已调波频谱构成特征为:

(1)双边带——以载波角频

0为中心的上边带(USB)和下边带(LSB)。均含有调制信号

(交流)的信息,且在调制后将基带带宽

m扩展为2m。

(2)载波频谱(谱线)——位于

0频点,是已调波式(3-3)中载波贡献的频谱。在单音

(余弦)调幅时,已调波式(3-6)或(3-7)的频谱,是由载频谱线及上下边频所构成,即:

SAM()πA0[(0)ej0(0)ej0]

πAMA0[(0m)ejm(0m)ejm]ej02 πAMA0[(0m)ejm(0m)ejm]ej02

(3-9)

3.2.3 调幅信号的功率分配

调幅波的平均功率,可通过计算

sAM(t)的均方值求得,为:

PAMs__________2AM1T22(t)limTsAM(t)dtTT2

(3-10)

由式(3-1)可得:

_______2PAMA0f(t)22

(3-11)

2 其中第一项是载波功率,第二项是双边带功率,即:

_______2PCA0f(t)Pf2 2,

2 两项成份中,

Pf是含有调制信号的功率,即传送的有效信息的功率,而

PC这一载波功率只

是为了确保无过调失真,而付出的不含任何信息的功率。因此就存在一个发送信号功率利用率问题,以含有信息的双边带功率与总平均功率之比来表示,称为调制效率,即:

AMPfPAM20f(t)Af(t)

(3-12)

_______2_______2 一般地,

AM不会超过30%,如上述单音调幅,在满足不过调条件下,则单音调制效率为:

22Am2Am2AM2222A0Am22A0Am22AM

AM(3-13)

由此结果看,即使取最大调幅度,即令

AM1,13,

效率只有一般地

AM取用0.3~0.8,

AM只有不足10%左右,至多25%。当然不含信息的载波消耗23以上的发送功率,是极不合

理的。

但是,之所以付出这么大功率的载波与双边带一起发送,目的就在于实现调幅波包络与调制信号f(t)呈线性关系。若用于民用广播通信,一个电台由几十万、上百万瓦的功率发射,却可以使千千万万的收听者能用简单的包络检波收到广播信号,收音机成本降低的社会效益却是很可观的。

3.2.4 双边带调幅(DSB)

除上述民用广播利用AM以外,多数线性调制的应用则可以抑制载波,此时,称为抑制载波双边带(SC-DSB),或称为双边带(DSB)。

可将AM调幅波简单地使载波项为0,即

A00就得到双边带信号:

sDSB(t)f(t)cos(0t0)

(3-14)

式中

f(t)为不含直流的调制信号(下同)。

DSB波形的频谱为:

SDSB()11F(0)ejF(0)ej22

00(3-15)

其中首末两项分别为负频域和正频域频谱构成的双边频谱,切莫误为各为上下边带。

显然,DSB信号的功率利用率,即调制效率为100%,图3-7示出了DSB时-频域图形和数

学模型。

利用平衡调制器(环路调制器)很易实现DSB。如图3-8所示的电路,采用了两对耦合线圈和4只性能相同的二极管构成平衡桥电路。当有调制信号和载波同时输入后,则输出为不含载波的DSB信号。当电路平衡度不够理想时,会产生少量“载漏”,但可以利用接收DSB信号中的“载漏”来提取相干接收的本地(相干)载波,后面将要讨论。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- banwoyixia.com 版权所有 湘ICP备2023022004号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务