集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。
1、函数概念的纵向发展
1.1 早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,15-12)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。
1.2 十八世纪函数概念——代数观念下的函数
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1.3 十九世纪函数概念——对应关系下的函数
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。1823年柯西(Cauchy,法,17-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。
等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。
1.4 现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数。其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20
世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持
久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.
(一)
马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.
自哥白尼的天文学以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二)
早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到16年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx.
当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.
18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三)
函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个分支而出现了,实际的需要促使人们对函数的定义进一步研究.
后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由 表示出,其中
富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍.
通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义.
1834年,数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这
种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分.
1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.”
根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数):
f(x)= 1(x为有理数), 0(x为无理数).
在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数.
狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四)
生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数,
即ρ(x)= 0,x≠0, ∞,x=0. 且
δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是 P(0)=压力/接触面=1/0=∞.
其余点x≠0处,因无压力,故无压强,即P(x)=0.另外,我们知道压强函数的积分等于压力,即
函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.
函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.
函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.
设集合X、Y,我们定义X与Y的积集X×Y为 X×Y={(x,y)|x∈X,y∈Y}.
积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系.
现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.
从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.
一)
马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.
自哥白尼的天文学以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学
家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二)
早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到16年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx.
当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.
18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三)
函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个分支而出现了,实际的需要促使人们对函数的定义进一步研究.
后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由 表示出,其中
富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍.
通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义.
1834年,数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分.
1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.”
根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数):
f(x)= 1(x为有理数), 0(x为无理数).
在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数.
狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四)
生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数,
即ρ(x)= 0,x≠0, ∞,x=0. 且
δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是 P(0)=压力/接触面=1/0=∞.
其余点x≠0处,因无压力,故无压强,即P(x)=0.另外,我们知道压强函数的积分等于压力,即
函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.
函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.
函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.
设集合X、Y,我们定义X与Y的积集X×Y为 X×Y={(x,y)|x∈X,y∈Y}.
积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系.
现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.
从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.
一、准备
在十六世纪末、十七世纪初的欧洲,文艺复兴带来了人们思维方式的改变.资本主义制度的产生,使社会生产力大大得到.资本主义工厂手工业的繁荣和向机器生产的过渡,促使技术科学和数学急速向前发展.
在科学史上,这一时期出现了许多重大的事件,向数学提出了新的课题.公元1492年,哥伦布发现了新,证实了大地是球形的观念;13年,哥白尼发表了《天体运行论》,使神学的重要理论支柱的地心说发生了根本的动摇;开普勒在1609~1619年,总结出行星运动的三大定律,导致后来牛顿万有引力的发现;1609年伽里略用自制的望远镜观察了月亮、金星、木星等星球,把人们的视野引向新的境界.这些科学实践拓展了人们对世界的认识,引起了人类思想上的质变.十六世纪,随着资本主义生产萌芽的出现,产生了新的生产关系,社会生产力有了很大的发展.社会实践中有大量处于不断运动和变化的关系需要人们去认识和处理.对它们的研究从而获得了“变量”的概念.对变化着的量的一般性质和它们之间的依赖关系的研究,又得到了“函数”的概念.使得对数学的研究从常量开始进入了变量的领域.这成为数学发展史上的一个转折点,也是“变量”数学发展的第一个决定性步骤.
由于“变量”作为新的问题进入了数学,对数学的研究方法也就提出了新的要求.在十七世纪前半叶,解析几何的观念已经有一系列优秀的数学家接近了.但是十七世纪三十年代,解析几何才被笛卡尔(Descartes,R.(法)1596~1650)和费尔马(Fermat,P.de(法)1601~1665)创立.
一般认为,解析几何的主要创立者是笛卡尔.1637年,笛卡尔用法文写了三篇论文《折光学》、《气象学》和《几何学》,并
为此写了一篇序言《科学中正确运用理性和追求真理的方》,哲学史上简称为《方》.《几何学》提出了解析几何学的主要思想和方法,这标志着解析几何学的诞生.和笛卡尔同时或较早,费尔马已得到解析几何的要旨.他在《平面与立体轨迹引论》(开始于1629年,1636年前完成.“立体轨迹”指不能用尺规作出的曲线,与现在的含义不同)一文中明确指出方程可以描述曲线,并通过对方程的研究可以推断出曲线的性质.
在解析几何里,由于建立了坐标系,可以用字母表示变动的坐标,用代数方程刻画一般平面曲线,用代数运算代替几何量的逻辑推导,从而把对几何图形性质的研究转化为对解析式的研究,使数与形紧密地结合起来了.这种新的数学方法的出现与发展,使数学的思想和方法的发展发生了质的变化,思格斯把它称为数学的转折点.此后人类进入了变量数学阶段,也是变量数学发展的第一个决定性步骤.为十七世纪下半叶微积分算法的出现准备了条件.
二、产生
微积分出现于十七世纪后半叶的西欧.牛顿(Newton,I.(英)12~1727)和莱布尼茨(Leibniz,G.W.(德)16~171)在十七世纪后半叶各自地建立了微积分,这是变量数学发展的第二个决定性步骤.
微积分是经过长时间的酝酿才产生的.微积分的原理可以追溯到古代.在中国,公元前4世纪的桓团、公孙龙街等所提出的“一尺之棰,日取其半,万世不竭”;公元3世纪的刘徽,公元5~6世纪的祖冲之、祖暅对圆周率、面积以及体积的研究,都包含有极限和微积分的思想萌芽.在欧洲,公元前3世纪古希腊的欧几里得(Euclid)、阿基米得(Archimedes约公元前287~212)所建立的确定面积和体积的方法,也都包含有上述萌芽.在十六世纪末、十七世纪初,由于受力学问题的研究、函数概念的产生和几何问题可以用代数方法来解决的影响,促使许多数学家去探索微积分.开普(Kepler.J.(德)1571~1630)、卡瓦列里(Cavalieri,F.B.(意)1598~17)和牛顿的老师巴罗(Barrow,I.(英)1630~1677)等人也研究过这些问题,但是没有形成理论和普遍适用的方法.1638年,费尔马首次引用字母表示无限小量,并运用它来解决极植问题.稍后,他又提出了一个与现代求导过程实质相同的求切线的方法,并用这种方法解决了一些切线问题和极值问题.后来,英格兰学派的格雷果里(Gregory,J(英)1638~1675)、瓦里斯(WalliS,J.(英)1616~1703)继续费尔马的工作,用符号“0”表示无限小量,并用它进行求切线的运算.到十七世纪早期,他们已经建立起一系列求解无限小问题的特殊方法.诸如,求曲线的切线、曲率、极大极小值,求运动的瞬时速度以及面积、体积、曲线长度、物体重心的计算等.但他们的工作差不多都局限于一些具体问题的细节之中,还缺乏普遍性的规律.
牛顿是从物理学观点来研究数学的,他创立的微积分学原理是同他的力学研究分不开的.他发现了力学三大定律和万有引力定律.1687年牛顿出版了他的名著《自然哲学的数学原理》,《原理》从作为力学基础的定义和公理(运动定律)出发,将整个力学建立在严谨的数学演绎基础上.就数学本身而言,《原理》不仅深入地运用了牛顿本人创造的分析工具,而且也是牛顿分析学说的第一次正式公布.他超越前人的功绩在于:将前人创立的特殊技巧统一为一般的算法,特别是确立了微分与积分这两类运算的互逆关系(微积分基本定理).
莱布尼茨却是从几何学的角度去考虑微积分的,特别是和巴罗的微分三角形有密切关系.1684年,他在《学艺》杂志上发表了他的第一篇微分学文章《一种求极大极小和切线的新方法,……》,这是世界上最早的微积分文献,比牛顿的《自然哲学的数学原理》早3年.他在文章中谈到量的微分概念,提出量的和、差、积、商、根、幂的微分公式,以及微分方法在求切线、求极值等几何问题上的应用.以后又陆续发表了一些文章,提出了诸如指数。对数的微分公式和微分的进一步的应用,他力图找到普遍的方法来解决数学分析中的问题.这样,在十七世纪七十年代中期,莱布尼茨通过研究几何问题,建立了与流数法实质一样的微积分算法.他所引进的微积分符号“d,f”比牛顿用的符号更灵活,更能反映微积分的本质.例如微分dx,二阶微分d2x,积分 ,导数 都非常适合、便利.这些符号一直沿用到今天,在促进微积分方法发展方面起了积极作用.
牛顿和莱布尼茨的工作是各自的,他俩的工作有很大的不同,主要区别是:牛顿把x和y的无穷小增量作为求导数的手段.当增量越来越小的时候,导数实际上就是增量的比的极限.而莱布尼茨却直接用x和y的无穷小增量(就是微分)求出它们之间的关系。这个差别反映了牛顿的物理学方向和莱布尼茨的几何学方向的不同思维方式.在物理学方面,需要关注速度、加速度等问题,而几何学却着眼于面积体积的计算:牛顿自由地用级数表示函数,而莱布尼茨宁愿用有限的形式来实现.他们的工作方式也不同,牛顿是经验的、具体的和谨慎的,而莱布尼茨是富于想象的、喜欢推广的而且是大胆的;他们对记号
的关心也有差别,牛顿认为用什么记号无关紧要,而莱布尼茨却花费很多时间来选择富有提示性的符号.
人类对求积问题(积分学的中心问题)的探讨,可以追溯到远古.但对切线问题(微分学的中心问题)的探讨却是比较晚的事.因而微分学的起点远远落后于积分学.牛顿、莱布尼茨将这两个貌似不相关的问题联系起来,用“微积分基本定理”或称“牛顿—莱布尼茨公
式”表达出来.他们有效地创立了微积分的基本定理和运算法则,从而使微积分能成为一门的学科,并成为数学中最大分支“分析学”的起源,终于不再是古希腊几何学的延展.这都是他们作出贡献以前不可能达到的.
三、发展
在数学上,有人把十七世纪叫做天才的时期,也有人把十八世纪叫做发明的时期.这两个世纪的数学成就是巨大的.
微积分学的深入发展,成为了十八世纪数学发展的主要线索.这种发展与广泛的应用紧密交织在一起,刺激和推动了许多新分支的产生,使分析形成了在观念和方法上都具有鲜明特别的的数学领域.这个时期微积分学的发展有三个显著特征.
第一个特征是分支广泛.数学家从物理学、力学、天文学的研究中发现、创立了许多数学新分支,这些分支在十八世纪大都处于萌芽状态,未形成系统严密的理论.他们的目标不是研究数学,而是用数学去解决物理学中的问题.他们认为数学只是物理学的一个工具.他们关心的只是数学对天文学、物理学的价值.可以说十八世纪数学的推动力是物理学和天文学.
泰勒(Taylor,B.(英)1685~1731)和马克劳林(Macleaurin,C.(英)1698~1746)在研究弦振动理论和天文学问题时,得到级数展开理论;微分几何是克莱罗(Clairaut,A.—C.(法)1713~1765)欧拉(Euler,L.(瑞)1707~1783)在研究曲线曲面的力学问题、光学问题、大地测量和地图绘制问题时产生的;欧拉、拉格朗日(Lagrange,J.-L.(法)1736~1813)和伯努利兄弟(Nikolaus Bernoulli1695~1726, DamielBernoulli 1700~1782(瑞))在研究力学和天体运行问题之时,建立了变分法和常微分方程;达朗贝尔(d′Alembert,J.leR.(法)1717~1783)、拉普拉斯(Laplace,P.-S.(法)1749~1827)、拉格朗日在研究弦振动、弹性力学和万有引力问题时建立了偏微分方程理论(主要是一阶的);欧拉、柯西(Cauchy,A-L.(法)17~1857)在研究流体力学问题时,建立了复变函数论等等.
第二个特征是方法的交替.几何论证法是自古以来人们研究数学时所广泛使用的方法.十七世纪的时候,代数是人们兴趣的中心,那时候代数和分析还没有分开来.但是到了十八世纪,它变成从属于数学分析,而且除了数论以外,促进代数研究的因素大部分来自数学分析.随着对微积分研究的进一步深入,欧拉和拉格朗日认识到分析方法具有更大的效用,就慎重地、逐渐地把几何论证换成分析论证.欧拉的许多教科书里都着重说明了怎样使用分析法.拉格朗日在他的《分析力学》的序言中大力推广分析论证.拉普拉斯在他的《宇宙体系统》中也强调了分析法的重要作用.后来许多数学家开始认识到分析法的重要性,这样数学分析的思想方法逐渐被普遍地采用了.
第三个特征是不严密.正如任何一项重大的发明,都不可能在一开始时便完整无瑕,微积分在其产生的初期,也因理论的不严密而在许多方面陷入了自相矛盾的困境.
微积分产生于解析几何、物理等的直观问题的需要,而同时也广泛地被利用.它没有相应的数学理论作指导,还来不及为自己打基础.微积分的基础是极限理论,而牛顿,莱布尼茨的极限观念是十分模糊的.究竟什么是极限?无穷小又是什么?这在当时没有人作出过合理的解释.级数和积分的收敛性,微分和积分次序交换,高阶微分的使用,以及微分方程解的存在性问题等等,那时几乎没有人涉足.数学家就沉迷于用新的数学方法去解决物理、天文等方面的问题,而又被得到的新的成果所陶醉.大家还顾及不上去追究在数学推理上的严密性.在当时的情况下也没看到有这必要.正如达朗贝尔在1743年说:“直到现在……表现出更多关心的是去扩大建筑,而不是在人口处张灯结彩;是把房子盖得更高些,而不是给基础补充适当的强度.”因此,十八世纪的数学家开垦了许多新的处女地,数量之多是惊人的,但是他们的工作是粗糙的,不严密的,是刀耕火种式的工作方法.由于十八世纪的数学家忙于应用解析几何和微积分这两种强有力的数学工具去解决科学和技术中的许多实际问题,并被新方法的成功所陶醉,而无暇顾及所依据的理论是否可靠,基础是否扎实,这就出现了谬误越来越多的混乱局面.
四、深入
到了十九世纪,新数学中直观的不严密的论证导致的局限性和矛盾愈发显著,微积分的严密化日益引起数学家的关注.严密的分析是从波尔查诺(Bolzano,B.(捷)1786~1848)、柯西、阿贝尔(Abei,N.H.(挪)1802~1829)和狄利克雷(Dirichlet,P.G.(德)1805~1859)的工作开始的,为它的进一步发展作出了大重大贡献的有维尔斯特拉斯(Weier-strass,K.(T.W.)(德)1815~17).柯西在他的《分折教程》(1821)中从定义变量开始,对于函数概念引进了变量之间的对应关系.而单值函数的确切定义,是狄利克雷在一篇关于博里叶级数的论文中《用正弦和余弦级数来表示完全任意的函数》(1837)中给出的.1829年狄利克雷给出了著名的狄利克雷函数(在一切有理数时取1,在一切无理数时取0).以后维尔斯特拉斯利用三角级数构造出处处连续处处不可导的函数例子.关于函数连续性的确切定义,即 说法,是由维尔斯特拉斯在1841~1856年间作中学教师时给出的.波尔查诺于1817年首先给出了导数的定义.柯西于1823年在他的《无穷小分析教程概论》的著作中,对定积分作了系统的开创性工作,对于连续函数给出了定积分作为和函数的极限的确切定义.黎曼(Riemann,(G.F.)B.(德)1826~1866)完成了定积分概念中对一般的有界函数的定义.分析的严密化促进了实数系的逻辑基础的建立.维尔斯特拉斯于1840年就开始考虑了无理数理论.到1872年戴德金(Dedekind,J.W.R德)1831~1916)的分化使实数系建立在有理数基础上,康托尔(Cantor,M.B.(德)1829~1920)等建立了严格的实数理论,使极限理论有了巩固的基础,从此微积分学才形成了严密理论体系,苏联数学课程的设置中,称这种理论体系的微积分为数学分析,并结合一般拓扑学的基础、实变函数论和泛函分析的基础内容,作为数学分析的延伸
添加评论
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- banwoyixia.com 版权所有 湘ICP备2023022004号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务