您的当前位置:首页正文

数学分析考研试题

来源:帮我找美食网
󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/1

󰀁1󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁

󰀂1−1

󰀁󰀁1.󰀁xlimf(x,y)󰀁D󰀁󰀁󰀁󰀁󰀁󰀁󰀂→x

y→y0

0

󰀁󰀁

x∈D

inff(x)+infg(x)󰀁inf{f(x)+g(x)}󰀁inff(x)+supg(x)

x∈D

x∈D

x∈D

x∈D

󰀁󰀁2.󰀁󰀁f(x)=x−[x]󰀂(−∞,+∞)󰀁󰀁1󰀁󰀂󰀁󰀁󰀂󰀁󰀁󰀃󰀁󰀁󰀁3.󰀁󰀁󰀂󰀂󰀁󰀁󰀁󰀁󰀁󰀃󰀄󰀃󰀁󰀁󰀁󰀁󰀁󰀂󰀁󰀁

󰀁󰀁4.󰀁S⊂R󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁S󰀁󰀁󰀁󰀂󰀂󰀂󰀂󰀁󰀁󰀂󰀂󰀁󰀁󰀁5.󰀁f(x)󰀂󰀁󰀂I󰀁󰀁󰀁󰀁󰀃󰀁󰀁󰀁f(x)󰀁I󰀁󰀂󰀂󰀂󰀂󰀁󰀂󰀁󰀁󰀁󰀁󰀁󰀁6.󰀁f(x)󰀂󰀃󰀃󰀁(−∞,+∞)󰀁󰀁󰀁󰀃󰀁󰀃󰀂󰀁󰀁󰀁󰀃k>0,T>0󰀁

󰀄󰀄f(x+T)=kf(x)󰀁󰀁󰀁󰀁󰀁󰀁󰀃a󰀂󰀁T󰀁󰀂󰀁󰀁󰀂󰀁󰀁󰀃ϕ(x)󰀁󰀄󰀄f(x)=axϕ(x).

󰀁󰀁7.󰀁󰀁󰀃f(x),x∈(−∞,+∞)󰀁󰀂󰀃󰀃󰀂󰀅󰀄x=a󰀂x=b󰀅󰀂󰀁

󰀁󰀁f(x)󰀂󰀂󰀁󰀁󰀃󰀁

󰀁󰀁8.󰀁f:R→R󰀁󰀃󰀃󰀁R󰀁󰀁󰀁󰀃󰀁A,B⊂R󰀂󰀃󰀁󰀁󰀁󰀁󰀂

(1)A⊂f−1[f(A)];

(2)f−1[A∪B]=f−1(A)∪f−1(B)(3)f−1[A∩B]=f−1(A)∩f−1(B)󰀁󰀂󰀁󰀂C

(4)f−1AC=f−1(A).

󰀁󰀁9.󰀁A󰀁󰀁󰀁󰀁󰀁α󰀁󰀁󰀃󰀁B={x+α|x∈A}󰀁󰀁󰀁󰀂

supB=supA+α,infB=infA+α.

󰀁󰀁10.󰀁󰀁󰀂f(x)=sinx2󰀃󰀂󰀂󰀁󰀁󰀃󰀁󰀁󰀁11.󰀁f(x)=x2+ax+b󰀁󰀁󰀁󰀂

1

max{|f(0)|,|f(1)|,|f(−1)|}󰀂.

2󰀁󰀁12.󰀁f(x)󰀃󰀃󰀁R󰀁󰀁󰀁󰀃2f(x)+f(1−x)=x2,x∈R,

󰀃f(x)󰀁󰀄󰀃󰀅󰀁

󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/2

󰀄

21n+󰀁󰀁1.󰀁a>1,an=+···+n,n=1,2,···,󰀃liman.

n→∞aa2a󰀃󰀄󰀃󰀄󰀃󰀄

111

󰀁󰀁2.󰀃󰀂lim1−21−2···1−2.

n→∞23n󰀃󰀄󰀃󰀄󰀃󰀄

112

󰀁󰀁3.󰀃󰀂lim1−1−···1−.

n→∞36(n+1)(n+2)󰀃

n3−123−133−1

···3.󰀁󰀁4.󰀃󰀂lim3n→∞2+133+1n+11

󰀁󰀁5.󰀁|an+2−an+1|<|an+1−an|,n󰀂1.󰀁󰀁:{an}󰀆󰀂󰀁

2󰀃󰀄

111

󰀁󰀁6.󰀁󰀁󰀂lim1+1+++···+=e.

n→∞2!3!n!111

󰀁󰀁7.󰀁󰀁󰀂󰀃󰀂an=1+++···+−lnn,n=1,2,󰀁󰀄󰀂c(c󰀂󰀁Euler󰀁󰀃).

23n󰀃󰀄

111

󰀁󰀁8.󰀃󰀄󰀂lim++···+.

n→∞n+1n+22n󰀅a󰀆ann

󰀁󰀁󰀁󰀂󰀆󰀂inf.󰀁󰀁9.󰀁0󰀁am+n󰀁am+an,m,n=1,2,···,󰀁󰀁󰀂lim

n→∞nn∈Nnan(a2n+3a),a>0.󰀁󰀁󰀂liman󰀁󰀁󰀁󰀅󰀃󰀃󰀂󰀆󰀁󰀁󰀁10.󰀁a1>0,an+1=

n→∞3a2+an

1

󰀁󰀁11.󰀁a1=1,an+1=1+,n=1,2,···,󰀁󰀁󰀂{an}󰀆󰀂󰀁󰀅󰀃󰀂󰀄󰀂󰀁

an1

󰀁󰀁12.󰀁a0=1,an=,n=1,2,···,󰀃liman.

n→∞1+an−1

󰀁󰀁13.󰀁lim(a1+a2+···+an)󰀁󰀁󰀁󰀁󰀁󰀂

n→∞

󰀂1−2󰀁󰀁󰀂󰀁󰀁

(1)lim

1

(a1+2a2+···+nan)=0;n→∞n1(2)lim(n!·a1·a2···an)n=0.

n→∞

12kn

a0+Cna1+Cna2+···+Cnak+···+Cnan

󰀁󰀁14.󰀁liman=a,󰀁󰀁󰀂lim=a.

n→∞n→∞2n1p+3p+···+(2n−1)p

.󰀁󰀁15.󰀃lim

n→∞np+1󰀁󰀁16.󰀁0󰀁󰀁17.󰀁0<λ<1,liman=a,󰀁󰀁󰀂liman+λan−1+λan−1+···+λa0=

n→∞

n→∞

󰀇

n→∞

2n

󰀈

a.1−λ󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/3

󰀂1−3

󰀁󰀁1.󰀃󰀂󰀁󰀁2.󰀃󰀂󰀁󰀁3.󰀃󰀂󰀁󰀁4.󰀃󰀂󰀁󰀁5.󰀃󰀂󰀁󰀁6.󰀃󰀂󰀁󰀁7.󰀃󰀂

󰀁󰀁󰀂󰀁󰀁

√√

x−a+x−a√lim.22x→ax−a√√m

1+αx·n1+βx−1lim.x→0x√√√(1−x)(1−3x)···(1−nx)lim.n−1x→1(1−x)

󰀋󰀉󰀊

n

(x+a1)(x+a2)···(x+an)−x.lim

x→+∞

√√󰀇󰀈n󰀇󰀈n

22x−x−1+x+x−1lim.x→+∞xn󰀇√󰀈n󰀇√󰀈n

221+x+x−1+x−x

lim.x→0x(1+x)α−1

(α=0).lim

x→0ln(1+x)x→+∞

󰀁󰀁8.󰀃󰀂lim[(x+a)α−xα],󰀃󰀃α>0,α=1,a>0.

f(x)

󰀁󰀁󰀁󰀂󰀁󰀁󰀁󰀃α=1,󰀄󰀄f(x)−f(αx)=o(x)(x→0),

x→0x󰀁󰀁󰀂f(x)=o(x)(x→0).

󰀃󰀄x

11

󰀁󰀁10.󰀃limsin+cos.

x→∞xx󰀁󰀁9.󰀁lim

xα−aα

(a>0).󰀁󰀁11.󰀃limβx→ax−aβ󰀃x+1󰀄1x+1x+1xa+b+c

󰀁󰀁12.󰀃lim(a>0,b>0,c>0).

x→0a+b+c1󰀌2󰀍xxx2a+b

(a>0,b>0).󰀁󰀁13.󰀃lim

x→0ax+bxaa−ax

󰀁󰀁14.󰀃limx(a>0).

x→aa−xa󰀁󰀁15.󰀁f(x)󰀁(0,+∞)󰀁󰀇󰀄󰀁f(x)󰀂0,󰀅󰀂󰀁󰀃lim

󰀁󰀁󰀂∀α>0,󰀈󰀁lim

f(αx)

=1.

x→+∞f(x)f(2x)

=1,

x→+∞f(x)x

a

󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/4

󰀂1−4󰀁󰀁󰀁󰀁

a󰀁t󰀁x

󰀁󰀁1.󰀁󰀁󰀃f(x)󰀁[a,b]󰀁󰀄󰀂󰀁󰀅M(x)=supf(t),x∈[a,b],

󰀁󰀁󰀂M(x)󰀁[a,b]󰀁󰀄󰀂.

󰀁󰀁2.󰀁󰀁󰀂󰀅󰀄󰀄x,y∈R󰀁󰀁󰀃f(x+y)=f(x)+f(y)

󰀂󰀃󰀄󰀁󰀃󰀁󰀄󰀂󰀁󰀃󰀁󰀁󰀇󰀃󰀁󰀃f(x)=ax.

󰀁󰀁3.󰀁󰀁󰀃f(x)󰀁R󰀁󰀁󰀃󰀃󰀁󰀂󰀁󰀃

(1)f(0+0),f(0−0)󰀈󰀁󰀁󰀃

(2)󰀅󰀂󰀂x,y∈R,󰀁

󰀃󰀄x+yf(x)+f(y)f=

22󰀁󰀁󰀂f(x)=[f(1)−f(0)]x+f(0),x∈R.󰀁󰀁4.󰀁󰀁󰀃f(x)󰀁x=0󰀁󰀁󰀄󰀃󰀃󰀁󰀁󰀁󰀂󰀁󰀃

f(αx)=βf(x),α>1,β>1.

󰀁󰀁󰀂f(x)󰀁x=0󰀄󰀄󰀂.

󰀁󰀁5.󰀁󰀁f(x)󰀁R󰀁󰀄󰀂󰀁󰀄󰀅󰀃󰀆󰀂󰀂

󰀅󰀂󰀅󰀂󰀁󰀂(α,β),󰀁󰀆

S={x|f(x)∈(α,β),x∈R}

󰀁󰀂󰀁.

󰀁󰀁6.󰀁󰀁󰀃f(x)󰀁[a,b]󰀁󰀄󰀂󰀁󰀂󰀁[a,b]󰀁󰀁󰀄󰀁󰀃󰀁

󰀁󰀁󰀁󰀃f(x)󰀁[a,b]󰀁󰀃󰀁󰀅󰀉.

󰀁󰀁7.󰀁󰀁󰀃f(x)󰀁R󰀁󰀄󰀈󰀄󰀂󰀁󰀅󰀁󰀁󰀃󰀃A,B,

󰀄∀x∈R,|f(x)|󰀁A|x|+B.

󰀁󰀁8.󰀁󰀁󰀃f(x)󰀁[a,+∞)󰀁󰀄󰀂󰀁limf(x)󰀁󰀁󰀁

󰀁󰀁󰀂f(x)󰀁[a,+∞)󰀁󰀉󰀇󰀃󰀃󰀊󰀁󰀂󰀆󰀂󰀁󰀁󰀆󰀊󰀁󰀄󰀂.

x→+∞

󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/5

󰀁󰀁9.󰀁󰀁󰀂󰀁󰀃f(x)󰀁󰀁󰀂I󰀁󰀄󰀈󰀄󰀂󰀁󰀄󰀅󰀃󰀆󰀂󰀂

∀{xn},{x󰀆n}⊂I,lim(xn−x󰀆n)=0⇒lim[f(xn)−f(x󰀆n)]=0.

󰀁󰀁10.󰀁󰀁󰀃f(x)󰀁[a,+∞)󰀁󰀄󰀈󰀄󰀂󰀁g(x)󰀁[a,+∞)󰀁󰀄󰀂󰀁

󰀂󰀁lim[f(x)−g(x)]=0.󰀁󰀁󰀂g(x)󰀁[a,+∞)󰀁󰀄󰀈󰀄󰀂.

󰀁󰀁11.󰀁󰀁󰀃f(x)󰀄g(x)󰀁[a,b]󰀁󰀄󰀂󰀁f(x)󰀅󰀉󰀁󰀂󰀁󰀃󰀂{xn}⊂[a,b],

󰀄∀n∈N,󰀁g(xn)=f(xn+1).󰀁󰀁󰀂∃x0∈[a,b],󰀄f(x0)=g(x0).

󰀁󰀁12.󰀁󰀁󰀃f(x)󰀁[0,+∞)󰀁󰀄󰀂󰀂󰀁󰀁󰀁󰀅∀c∈R,f(x)−c󰀉󰀋󰀁󰀁󰀂󰀂

󰀃󰀂󰀁󰀁󰀁limf(x)󰀁󰀁.

󰀁󰀁13.󰀁󰀁󰀃f(x)󰀁(a,+∞)󰀁󰀄󰀂󰀂󰀁󰀁󰀁

󰀁󰀁󰀂∀T,∃{xn}⊂(a,+∞),󰀂limxn=+∞,󰀄

n→∞

n→∞

x→∞

x→+∞

n→∞

n→∞

lim[f(xn+T)−f(xn)]=0.

x→∞

󰀁󰀁14.󰀁f(x)󰀄g(x)󰀃󰀁󰀃󰀃󰀁R󰀁󰀄󰀂󰀁󰀂󰀁󰀁󰀃󰀁󰀂lim[f(x)−g(x)]=0.

󰀁󰀁󰀂f(x)=g(x),x∈R.

󰀁󰀁15.󰀃󰀁󰀃y=x+[x]󰀁󰀄󰀁󰀃.

󰀁󰀁16.󰀁󰀁󰀂󰀅󰀂󰀂󰀈󰀃y∈R,󰀅󰀅cotx=yx󰀁(0,π)󰀃󰀁󰀃󰀄󰀁󰀃x=x(y),

󰀂x=x(y)󰀄󰀂.

󰀁󰀁17.󰀅ωf(δ)=

󰀁󰀁󰀂󰀁󰀃f(x)󰀁(a,b)󰀁󰀄󰀈󰀄󰀂󰀁󰀄󰀅󰀃󰀆󰀂󰀂limωf(δ)=0.+

δ→0

|x1−x2|󰀁δ

sup|f(x1)−f(x2)|,x1,x2∈(a,b),

󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/6

󰀁󰀂

󰀄󰀂󰀄󰀂󰀁󰀆󰀁1.󰀁󰀁󰀁󰀁󰀁

Toeplitz󰀁󰀁󰀁Stolz󰀃󰀂󰀂󰀁󰀁

󰀁󰀄󰀃󰀅󰀄󰀂󰀆󰀂󰀅󰀈󰀃󰀄󰀆󰀁󰀂󰀅󰀄󰀄󰀅󰀃󰀄󰀄󰀂󰀅󰀄󰀄󰀅󰀋󰀅

t11t21t31···tn1···

t22t32tn2

t33

···

tnn·········tn3···············

󰀅󰀇󰀁󰀃󰀃󰀆

n󰀎

tnk=1,n=1,2,3,···,󰀇󰀂󰀄󰀆󰀂󰀁󰀁󰀂󰀃󰀁1;(1)

(2)󰀅󰀂󰀂󰀄󰀃󰀁k,󰀈󰀁limtnk=0,󰀇󰀂󰀄󰀂󰀃󰀁󰀂󰀅󰀁󰀃󰀂.󰀄Toeplitz󰀅󰀃󰀄󰀂󰀄󰀇󰀅󰀄󰀋.󰀅󰀂󰀃󰀆󰀁󰀃󰀄{tnk}󰀁󰀄󰀂󰀄󰀇󰀅󰀄2.󰀁󰀁󰀁󰀁󰀂󰀁

󰀁{tnk}󰀁󰀄󰀂󰀄󰀇󰀅󰀄󰀃󰀄󰀁α1,α2,α3,...,αn,...󰀁󰀄󰀂󰀄󰀂󰀁󰀆

βn=tn1α1+tn2α2+···+tnnαn,n=1,2,...

󰀅󰀆󰀃󰀂α1,α2,α3,...,αn,...󰀊󰀃󰀂β1,β2,β3,...,βn,...󰀁󰀆󰀁󰀂󰀁󰀄󰀂󰀄󰀇󰀅󰀄󰀆󰀁.󰀆󰀂󰀄󰀂󰀆󰀁󰀁󰀇󰀌

󰀇󰀆1󰀁{tnk}󰀁󰀂󰀄󰀂󰀄󰀇󰀅󰀄󰀃󰀄,a1,a2,a3,...,an,...󰀁󰀄󰀂󰀄󰀂󰀁

bn=tn1a1+tn2a2+···+tnnan,n=1,2,...

󰀇󰀃󰀂b1,b2,b3,...,bn,...󰀂󰀆󰀃󰀂a1,a2,a3,...,an,...󰀆󰀄󰀇󰀅󰀄󰀆󰀁󰀄󰀊󰀁.

󰀆liman=0󰀁󰀅limbn=0.

n→∞

n→∞

n→∞

k=1

󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀁󰀂󰀂󰀂󰀁󰀁󰀁󰀁

󰀁󰀁󰀂󰀂󰀂

http://shuxuefenxi.ys168.com/7

ε󰀁󰀁󰀂∀ε>0,∃m∈N,󰀄󰀄󰀌k>m󰀉,󰀇󰀁|ak|<2.

󰀅󰀃󰀃󰀃󰀁m󰀁󰀅󰀁p∈N󰀄󰀇󰀂󰀁󰀄󰀄󰀌n>p󰀉󰀁󰀁tn1|a1|+tn2|a2|+···+tnm|am|<

ε2(󰀆󰀃󰀆(2)).

󰀅N=max{m,p}󰀁󰀅󰀌n>N󰀉󰀁󰀇󰀁

|βn|󰀁tn1|α1|+···+tnm|αm|+tnm+1|αm+1|+···+tnn|αn|<

ε2ε+(tnm+1+···+tnn)2󰀁

ε2+

ε2=ε.

󰀇󰀆󰀆󰀁{tnk}󰀂󰀄󰀂󰀄󰀇󰀅󰀄󰀃󰀄,{un}󰀂󰀆󰀂󰀂a󰀁󰀄󰀂󰀈󰀃󰀄󰀂,

n󰀎vn=tnkuk,n=1,2,···󰀅󰀁limvn=a󰀇

k=1

n→∞

󰀁󰀁󰀆limun=a󰀃󰀃󰀄󰀁un=a+αn,󰀃󰀃{αn}󰀁󰀂󰀅󰀁󰀃󰀂󰀇󰀂󰀂

󰀃

n→∞

vn==a

n󰀏k=1

n󰀏k=1

tnk(a+αk)tnk+

n󰀏k=1

tnkαk

=a+󰀐

󰀆󰀇󰀆󰀈󰀃󰀍󰀁

n→∞

n󰀎k=1

n󰀏k=1

tnkαk.

󰀑

tnkαk󰀂󰀂󰀅󰀁󰀃󰀂󰀇󰀈󰀃󰀁

limvn=a󰀇

Stolz󰀃󰀆󰀃󰀁{xn}󰀂{yn}󰀂󰀈󰀃󰀄󰀂󰀁0󰀅󰀂limxn=+∞󰀇󰀅󰀇󰀁󰀁󰀁󰀅󰀄󰀂lim󰀂󰀃󰀉󰀄󰀃󰀁lim

󰀃

n→∞

ynxn→∞n

=a.

yn−yn−1

n→∞xn−xn−1

=a,

󰀁󰀁󰀁󰀊󰀈󰀅󰀈󰀁󰀄󰀄󰀅x0=y0=0󰀇󰀄󰀇󰀄󰀇󰀅󰀄󰀃󰀄

tnk=

xk−xk−1

,n=1,2,···,k=1,2,···,n.xn

yn−yn−1,xn−xn−1

󰀇󰀃󰀃󰀄󰀅󰀄󰀂un=

vn==

n󰀏

n=1,2,···󰀅󰀆󰀁󰀇󰀄󰀊

n󰀏xk−xk−1k=1

tnkuk=

1

xn

k=1

n󰀏k=1

xnyn

xn

·

yk−yk−1xk−xk−1

(yk−yk−1)=

n→∞

󰀆󰀊󰀍󰀁󰀅󰀇󰀇󰀆󰀆󰀇󰀄󰀊limvn=a󰀇󰀇lim

ynxn→∞n

=a.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top