您的当前位置:首页正文

2021年-有答案-新人教版四年级(下)期末数学试卷(22)

来源:帮我找美食网


2021学年新人教版四年级(下)期末数学试卷(22)

一、动动脑,仔细填(22分)

1. 经过一点可以画________条直线。

2. 直线________端点,向________无限延伸;射线有________个端点,向________无限延伸,线段有________个端点,________无限延伸。

3. 一个周角=________个平角=________个直角。

4. 钟面上________时整的时候,时针和分针成直角:________时整的时候,时针和分针成平角。

5. 用量角器量角的度数时,量角器上的中心点和与角的________重合,量角器的零刻度与角的一条边________.

6. 把一根水管锯3次,能锯成________段,如果锯成6段,需要锯________次。

7. 沿圆形池塘的一周共栽了75棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树________棵。

8. 在同一平面内不相交的两条直线叫________.

9. 如果两条直线相交成________角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的________,这两条直线的交点叫做________.

10. 从直线外一点到这条直线所画的垂直线段________,它的长度叫做这点到直线的________.

二、我是公正小法官(对的打“√”错的打“×”)(5分)

过直线外一点𝐴,向已知直线作垂线,只能作一条。________(判断对错)

永不相交的两条直线互相平行。________.(判断对错)

291÷28=10.________.(判断对错)

三角形的内角和是180度。________.(判断对错)

两点确定一条直线。________. 三、小小神算家

试卷第1页,总13页

口算我最棒 35×20= 25×4= 90×90=

用竖式计算 (1)81÷25=

(2)607÷18=

(3)290÷24=

(4)620÷80=

(5)540÷27=

(6)627÷33=

78×10= 125×8= (4×5)+4= 混合运算 2×36+20= 190−30×5= 90+5×60= 56÷7×8=

过𝐴点画已知直线的平行线和垂线。

12+80÷10= 125÷25−4= 四、画一画,做一做

用量角器画出45∘、180∘、150∘的角。

画出下列小正方体积木的三视图。

五、应用题(共15分)

小明平均每分打120个字,打字30分钟,他能打完3000字吗?

花店有88支玫瑰花,每20支扎一束,可以扎成几束,还剩几支?

试卷第2页,总13页

(1)包装480瓶墨水,一共装了8箱,每箱10盒。每盒装多少瓶? (2)包装480瓶墨水,每6瓶装一盒,10盒装一箱。一共装了多少箱。

试卷第3页,总13页

参考答案与试题解析

2021学年新人教版四年级(下)期末数学试卷(22)

一、动动脑,仔细填(22分) 1. 【答案】 无数

【考点】

直线、线段和射线的认识 【解析】

根据“两点确定一条直线,经过一点可以画无数条直线”可知:经过一点可以画无数条直线;进而得出结论。 【解答】

解:由分析可知:经过一点可以画无数条直线; 故答案为:无数。 2. 【答案】

无,两边,一,一边,两,不能 【考点】

直线、线段和射线的认识 【解析】

根据直线、射线和线段的含义:线段有2个端点,有限长,可以度量;射线有一个端点,无限长;直线无端点,无限长;进而解答即可。 【解答】

解:直线 无端点,向 两边无限延伸;射线有 一个端点,向 一边无限延伸,线段有 两个端点,不能无限延伸。

故答案为:无,两边,一,一边,两,不能。 3. 【答案】 2,4

【考点】 角的度量

角的概念及其分类 【解析】

根据周角、平角、直角的度数及关系直接解答即可。 【解答】

1周角=360∘,1平角=180∘,1直角=90∘; 所以一个周角=2个平角=4个直角。 4. 【答案】 3或9,6

【考点】

角的概念及其分类

试卷第4页,总13页

角的度量 【解析】

根据直角和平角的含义:等于90∘的角叫直角;等于180∘的角叫平角;并结合实际,进行解答即可。 【解答】

解:3或9时整,钟面上的分针和时针所夹的角是直角; 6时整,钟面上的分针和时针所夹的角是平角; 故答案为:3或9,6. 5. 【答案】 顶点,重合 【考点】 角的度量 【解析】

测量角的度数时:第一步:点重合,量角器的中心点与顶点重合。第二步:线重合,量角器的零刻度线与角的一边重合。第三步:读度数,看角的另一边落到量角器的哪个刻度线上,这个刻度数是这个角的度数。 【解答】

解:用量角器量角的度数时,量角器上的中心点和与角的 顶点重合,量角器的零刻度与角的一条边 重合。 故答案为:顶点、重合。 6. 【答案】 4,5 【考点】 植树问题 【解析】

根据“次数=段数−1;段数=次数+1”解答即可得出答案。 【解答】

解:3+1=4(段); 6−1=5(次);

答:把一根水管锯3次,能锯成4段,如果锯成6段,需要锯5次。 故答案为:4,5. 7. 【答案】 75 【考点】 植树问题 【解析】

根据题干,沿圆形的湖一周种了75棵柳树,那么此时植树棵数=间隔数,即桃树的棵数。 【解答】

解:因为沿圆形的湖一周种了75棵柳树,那么此时植树棵数=间隔数, 所以湖一周一共有75棵桃树;

试卷第5页,总13页

答:湖一周一共有75棵桃树。 故答案为:75. 8. 【答案】 平行线

【考点】

垂直与平行的特征及性质 【解析】

依据在同一平面内两条直线的关系即可作答。 【解答】

解:在同一平面内,两条直线的关系只有两种:相交或平行。 所以说在同一平面内不相交的两条直线叫 平行线。 故答案为:平行线。 9. 【答案】 直,垂线,垂足

【考点】

垂直与平行的特征及性质 【解析】

根据垂直的定义:如果两条直线相交成直角,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足;据此解答即可。 【解答】

解:如果两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫作另一条直线的垂线,这两条直线的交点叫做垂足。 故答案为:直,垂线,垂足。 10. 【答案】 最短,距离

【考点】

两点间线段最短与两点间的距离 【解析】

根据垂直的性质:从直线外一点向已知直线画垂直线段和斜线,垂线段最短;进行解答即可。 【解答】

由垂直的性质得:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

二、我是公正小法官(对的打“√”错的打“×”)(5分) 【答案】 √

【考点】

过直线上或直线外一点作直线的垂线 【解析】

根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;据此判断即可。 【解答】

试卷第6页,总13页

解:根据垂直的性质可知:过直线外一点𝐴,向已知直线作垂线,只能作一条; 故答案为:√. 【答案】 ×

【考点】

垂直与平行的特征及性质 【解析】

根据平行的含义:同一平面内,不相交的两条直线,叫做平行线;据此判断即可。 【解答】

解:由分析可知:永不相交的两条直线互相平行,说法错误,前提是:必须在同一平面内;

故答案为:×. 【答案】 ×

【考点】

整数的除法及应用 【解析】

根据整数除法的计算方法,用291除以28,求出结果,再与比较即可。 【解答】

解:291÷28=10...11

计算的结果是10...11,而不是10. 故答案为:×. 【答案】 √

【考点】

三角形的内角和 【解析】

根据三角和定理:三角形的内角和是180度,即可作出判断。 【解答】

解:由三角和定理可得:三角形的内角和是180度, 故答案为:√. 【答案】 正确

【考点】

直线、线段和射线的认识 【解析】

根据直线的性质:两点确定一条直线;进而判断即可。 【解答】

解:根据直线的性质可知:两点确定一条直线,说法正确; 故答案为:正确。 三、小小神算家 【答案】 解:

35×20=700 试卷第7页,总13页

25×4=100 【考点】

整数的乘法及应用 【解析】

78×10=780 90×90=8100 125×8=1000 (4×5)+4=24 根据整数乘法和加法的计算方法进行计算。 【解答】 解:

35×20=700 25×4=100 78×10=780 90×90=8100 125×8=1000 (4×5)+4=24 【答案】

解:(1)81÷25=3...6

(2)607÷18=33...13

(3)290÷24=12...2

(4)620÷80=7...60

(5)540÷27=20

(6)627÷33=19

【考点】

整数的除法及应用 【解析】

根据整数除法的计算法则列竖式进行计算即可。

试卷第8页,总13页

【解答】

解:(1)81÷25=3...6

(2)607÷18=33...13

(3)290÷24=12...2

(4)620÷80=7...60

(5)540÷27=20

(6)627÷33=19

【答案】

解:(1)2×36+20 =72+20 =92;

(2)190−30×5 =190−150 =40;

(3)90+5×60 =90+300 =390;

(4)56÷7×8 =8×8

试卷第9页,总13页

=64;

(5)12+80÷10 =12+8 =20;

(6)125÷25−4 =5−4 =1.

【考点】

整数四则混合运算 【解析】

(1)(3)先算乘法,再算加法; (2)先算乘法,再算减法;

(4)按照从左到右的顺序计算;(5)先算除法,再算加法; (6)先算除法,再算减法。 【解答】

解:(1)2×36+20 =72+20 =92;

(2)190−30×5 =190−150 =40;

(3)90+5×60 =90+300 =390;

(4)56÷7×8 =8×8 =64;

(5)12+80÷10 =12+8 =20;

(6)125÷25−4 =5−4 =1.

四、画一画,做一做 【答案】

试卷第10页,总13页

根据分析画图如下:

【考点】

过直线外一点作已知直线的平行线 过直线上或直线外一点作直线的垂线 【解析】

(1)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和𝐴点重合,过𝐴沿直角边向已知直线画直线即可。

(2)把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和𝐴点重合,过点沿三角板的直角边画直线即可。 【解答】

根据分析画图如下:

【答案】

解:由分析画图如下:

【考点】

画指定度数的角 【解析】

用量角器的圆点和角的顶点重合,0刻度线和角的一条边重合,另一条边在量角器上的刻度就是该角的度数。 【解答】

解:由分析画图如下:

【答案】

试卷第11页,总13页

解:根据题干分析画图如下:

【考点】

从不同方向观察物体和几何体 【解析】

观察图形可知,从正面看是3列,左边一列2个正方形,中间和右边一列都是1个正方形靠下边;从右侧面看是两层,下层一行2个正方形,上层1个正方形靠右;从上面看是两行,上行有3个正方形,下行有1个正方形靠左;据此即可画图。 【解答】

解:根据题干分析画图如下:

五、应用题(共15分) 【答案】

120×30=3600(字). 3600<3000.

答:他能打完3000字 【考点】

整数、小数复合应用题 【解析】

首先根据乘法的意义求出每分打120个字,打字30分钟能打字数后,再和3000相比较即可。平均每分打120个字,打字30分钟,则可打:120×30字。 【解答】

120×30=3600(字). 3600<3000.

答:他能打完3000字 【答案】

解:88÷20=4(束)…8支。 答:可以扎成4束,余8支。 【考点】

整数、小数复合应用题 有余数的除法 【解析】

花店有88支玫瑰花,每20支扎一束,根据除法的意义可知,用花的总支数除以每束的支数即得可以扎几束,还剩几支。 【解答】

解:88÷20=4(束)…8支。 答:可以扎成4束,余8支。

试卷第12页,总13页

【答案】

解:(1)480÷(8×10) =480÷80 =6(瓶)

答:每盒装6瓶。 (2)480÷(6×10) =480÷60 =8(箱)

答:一共可以装8箱。 【考点】

整数的除法及应用 【解析】

(1)由“一共装了8箱,每箱装10盒装一箱”可知:一共装了8×10=80盒,则每盒装的瓶数为[480÷(8×10)]瓶,据此解答即可。

(2)先计算出每箱可以装的瓶数,即6×10=60瓶,再据除法的意义即可得解。 【解答】

解:(1)480÷(8×10) =480÷80 =6(瓶)

答:每盒装6瓶。 (2)480÷(6×10) =480÷60 =8(箱)

答:一共可以装8箱。

试卷第13页,总13页

因篇幅问题不能全部显示,请点此查看更多更全内容

Top