周瑞华 周瑞华先生,中达电通股份有限公司应用工程师。
关键词:PMSM 整流 功率驱动单元 控制单元
永磁交流伺服系统的驱动器经历了模拟式、模拟数字混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等缺点,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加可靠。现在,高性能的伺服系统大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。后者由两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是技术垄断的核心。
一交流永磁伺服系统的基本结构
交流永磁伺服系统主要有伺服控制单元、功率驱动单元、通信接口单元、伺服电机及相应的反馈检测器件组成。
其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。我们的交流永磁同步驱动器集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化,是传统的驱动系统所
不可比拟的。
目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实
现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软起动电路,以减小起动过程对驱动器的冲击。
伺服驱动器大体可以划分为功能比较的两个模块,如图1所示。功率板(驱动板)是强电部分其中包括两个单元,一是功率驱动单元用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源;控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心,控制算法的运行载体。控制板通过相应的算法输出PWM信号,作为驱动电路的驱动信号,来改变逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。
二功率驱动单元
功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相
应的直流电。整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程简单的说就是AC-DC-AC的过程。
整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。三相全桥不控整流电路的原理图见2三相交流电压波形其相位相差120°,幅值相等波形图见图3,通过三相全桥不控整流电路整流后得到相应的直流电压Ud波形图见图4。为分析方便,把一个周期分为6段,每段相隔60°。在第Ⅰ段期间,a相电位ua最高,共阴极组的VT1被触发导通,b相电位ub最低,共阳极组的被触发导通,电流路径为ua → i→负载→VT6 → ub。变压器a、b两相工作,输出电压为线电压ud = uab。在第Ⅱ段期间, ua仍最高, VT1继续导通,而uc变为最负,电源过自然换流点时触发VT2导通,c相电压低于b相电压, VT6因承受反压而关断,电流即从b相换到c相。这时电流路径为ua → VT1→负载→VT2→uc。变压器a、c两相工作,输出电压为线电压ud = ubc。在第Ⅲ段期间, ub为最高,共阴极组在经过自然换流点时触发VT3导通,由于b相电压高于a相电压,VT1管因承受反压而关断,电流从a相换相到b相。VT2因为uc仍为最低而继续导通。这时电流路径为VT3→ →R(L)→VT3 →uc。变压器b、c两相工作,输出电压为线电压ud =
ubc。以下各段依此类推,可得到在第Ⅳ段
时输出电压ud = uba;在第Ⅴ段时输出电压ud = uca;在第Ⅵ段时输出电压ud = ucb。以后则重复上述过程。由以上分析可知,三相不控桥式整流电路晶闸管的导通换流顺序是:VT6→VT1→VT2→VT3→VT4→VT5→VT6。
逆变部分(DC-AC)采用的功率器件集驱动电路、保护电路和功率开关于一体的智能功率模块(IPM),主要拓扑结构是采用了三相桥式电路,其原理见图5,利用脉宽调制技术PWM通过改变功率晶体管交替导通的时间来改变逆变器输出波形的频率,改变每半周期内
晶体管的通断时间比,也就是说通过改变脉冲宽度来改变逆变器输出电压幅值的大小以达到调节功率的目的。
对图5做一下分析,其中VT1~VT6是6个功率开关管,S1、S2、S3、分别代表3个桥臂。对各桥臂的开关状态做以下规定:当上桥臂开关管“开”状态时(此时下桥臂开关管必然是“关”状态),开关状态为1;当下桥臂开关管“开”状态时(此时下桥臂开关管必然是“关”状态),开关状态为0。3个桥臂只有“0”和“1”两种状态,因此S1、S2、S3形成000、001、010、011、100、101、111共8种开关管模式,其中000和111开关模式使逆变输出电压为零,所以称这种开关模式为零状态。
三控制单元
控制单元是整个交流伺服系统的核心,实现系统位置、速度、转矩和电流控制。所采用
的数字信号处理器(DSP)除具有快速的数据处理能力外,还集成了丰富的用于电机控制的专用集成电路,如A/D转换器、PWM发生器、定时计数器电路、异步通信电路、CAN总线收发器以及高速的可编程静态RAM和大容量的程序存储器等。伺服驱动器通过采用磁场定向的控制原理(FOC)和坐标变换,实现矢量控制(VC),同时结合正弦波脉宽调制(SPWM)控制模式对电机进行控制。永磁同步电动机的矢量控制一般通过检测或估计电机转子磁通的位置及幅值来控制定子电流或电压,这样,电机的转矩便只和磁通、电流有关,与直流电机的控制方法相似,可以得到很高的控制性能。对于永磁同步电机,转子磁通位置与转子机械位置相同,这样通过检测转子的实际位置就可以得知电机转子的磁通位置,从而使永磁同步电机的矢量控制比起异步电机的矢量控制有所简化。
伺服驱动器在控制交流永磁伺服电机时,可分别工作在电流(转矩)、速度、位置控制方式下。系统的控制结构如图6所示,由于交流永磁伺服电机(PMSM)采用的是永久磁铁励磁,其磁场可以视为恒定;同时,交流永磁伺服电机的转速就是同步转速,即其转差为零。这些条件使得交流伺服驱动器在驱动交流永磁伺服电机时的数学模型的复杂程度得以大大降低。从图6可以看出,系统是基于测量电机的两相电流反馈(Ia、Ib)和电机位置。将测得的相电流(Ia、Ib)结合位置信息,经坐标变化(从a,b,c坐标系转换到转子d,q坐标系),得到Id,Iq分量,分别进入各自的电流调节器。电流调节器的输出经过反向坐标变化(从d,q坐标系转换到a,b,c坐标系),得到三相电压指令。控制芯片通过这三相电压指令,经过反向、延时后,得到6路PWM波输出到功率器件,控制电机运行。系统在不同指令输入方式下,指令和反馈通过相应的控制调节器,得到下一级的参考指令。在电流环中,d,q轴的转矩电流分量(Iq)是速度控制调节器的输出或外部给定。而一般情况下,磁通分量为零(Id=0),但是当速度大于限定值时,可以通过弱磁(Id<0),得到更高的速度值。
从a,b,c坐标系转换到d,q坐标系由克拉克(CLARKE)和帕克(PARK)变换来实现;从d,q坐标系转换到a,b,c坐标系是由克拉克和帕克的逆变换来实现的。以下是两个变换公式,克拉克变换(CLARKE):
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- banwoyixia.com 版权所有 湘ICP备2023022004号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务