通道侗族自治县二中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P﹣DCE三棱锥的外接球的体积为( )
A. B. C. D.
2. 已知函数f(x)=x3+(1﹣b)x2﹣a(b﹣3)x+b﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组A.
B.
22
所确定的平面区域在x+y=4内的面积为( )
C.π D.2π
3. 过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( ) A.
B.
C.
D.
4. 在等差数列{an}中,a1=2,a3+a5=8,则a7=( ) A.3
B.6
C.7
D.8
5. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( ) 1 2 0.5 1 x y z A.1 B.2 C.3
6. 已知g(x)(ax取值范围是( )
A.(1,) B.(1,0) C. (2,) D.(2,0)
D.4
bb2a)ex(a0),若存在x0(1,),使得g(x0)g'(x0)0,则的 xa第 1 页,共 19 页
精选高中模拟试卷
7. 设函数f(x)是定义在(,0)上的可导函数,其导函数为f'(x),且有2f(x)xf'(x)x2,则不等式
(x2014)2f(x2014)4f(2)0的解集为
) B、(2012,0) C、(,2016) D、(2016,0) A、(,20128. 已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论: ①f(0)f(1)>0; ②f(0)f(1)<0; ③f(0)f(3)>0; ④f(0)f(3)<0.
其中正确结论的序号是( ) A.①③
B.①④
,
C.②③
D.②④
.则“
”是“
”成立的( )
9. 已知向量
,其中
A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件 10.设集合 A={ x|﹣3≤2x﹣1≤3},集合 B为函数 y=lg( x﹣1)的定义域,则 A∩B=( ) A.(1,2) B.[1,2] A.(﹣∞,﹣2) A.有最大值
C.[1,2) D.(1,2]
11.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( )
B. D.上是减函数,那么b+c( )
C.有最小值
D.有最小值﹣
B.有最大值﹣
12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为( ) A.1
B.
C.
D.
二、填空题
13.已知正四棱锥OABCD的体积为2,底面边长为3, 则该正四棱锥的外接球的半径为_________
第 2 页,共 19 页
精选高中模拟试卷
14.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km.
15.已知点M(x,y)满足是 .
,当a>0,b>0时,若ax+by的最大值为12,则+的最小值
16.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数 .
17.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为 .
18.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π) .
三、解答题
19.(本题12分)
正项数列{an}满足an2(2n1)an2n0. (1)求数列{an}的通项公式an; (2)令bn
20.(本题满分12分)如图所示,在正方体ABCD—A1B1C1D1中, E、F分别是棱DD1 、C1D1的中点. (1)求直线BE和平面ABB1A1所成角的正弦值; (2)证明:B1F∥平面A1BE.
1,求数列{bn}的前项和为Tn.
(n1)anA1 第 3 页,共 19 页
D1 C1 F E D
B1
A 精选高中模拟试卷
21.(本小题满分12分)
已知向量a,b满足:|a|1,|b|6,a(ba)2. (1)求向量与的夹角; (2)求|2ab|.
22.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示. (Ⅰ)求椭圆E的方程;
(Ⅱ)判断▱ABCD能否为菱形,并说明理由.
(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.
第 4 页,共 19 页
精选高中模拟试卷
23.(本小题满分13分)
x2y21的上、下顶点分别为A,B,点P在椭圆上,且异于点A,B,直线AP,BP 如图,已知椭圆C:4与直线l:y2分别交于点M,N,
(1)设直线AP,BP的斜率分别为k1,k2,求证:k1k2为定值; (2)求线段MN的长的最小值;
(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.
31x2y224.已知椭圆C:221(ab0),点(1,)在椭圆C上,且椭圆C的离心率为.
22ab(1)求椭圆C的方程;
(2)过椭圆C的右焦点F的直线与椭圆C交于P,Q两点,A为椭圆C的右顶点,直线PA,QA分别
交直线:x4于M、N两点,求证:FMFN.
第 5 页,共 19 页
精选高中模拟试卷
第 6 页,共 19 页
精选高中模拟试卷
通道侗族自治县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】C
,
【解析】解:易证所得三棱锥为正四面体,它的棱长为1, 故外接球半径为故选C.
,外接球的体积为
【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题.
2. 【答案】 B
【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2. 则f(x)=
x3﹣x2+ax,
2
函数的导数f′(x)=x﹣2x+a,
因为原点处的切线斜率是﹣3, 即f′(0)=﹣3, 所以f′(0)=a=﹣3, 故a=﹣3,b=2, 所以不等式组则不等式组
如图阴影部分表示,
所以圆内的阴影部分扇形即为所求. ∵kOB=﹣
,kOA=
,
为
22
确定的平面区域在圆x+y=4内的面积,
∴tan∠BOA==1,
∴∠BOA=,
,扇形的面积是圆的面积的八分之一,
×4×π=
,
∴扇形的圆心角为
22
∴圆x+y=4在区域D内的面积为
故选:B
第 7 页,共 19 页
精选高中模拟试卷
【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.
3. 【答案】A
【解析】解:若直线斜率不存在,此时x=0与圆有交点, 直线斜率存在,设为k,则过P的直线方程为y=kx﹣2, 即kx﹣y﹣2=0,
22
若过点(0,﹣2)的直线l与圆x+y=1有公共点,
则圆心到直线的距离d≤1, 即解得k≤﹣即
≤α≤
≤1,即k2﹣3≥0, 或k≥且α≠≤α≤
, , ,
综上所述,
故选:A.
4. 【答案】B
【解析】解:∵在等差数列{an}中a1=2,a3+a5=8, ∴2a4=a3+a5=8,解得a4=4, ∴公差d=∴a7=a1+6d=2+4=6 故选:B.
5. 【答案】A
【解析】解:因为每一纵列成等比数列, 所以第一列的第3,4,5个数分别是,,第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
.
=,
第 8 页,共 19 页
精选高中模拟试卷
所以y=,
,.
第5行的第1、3个数分别为所以z=
.
+
=1.
所以x+y+z=+故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.
6. 【答案】A 【解析】
考
点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数fx的单调性进一步求函数最值的步骤:①确定函数fx的定义域;②对fx求导;③令fx0,解不等式得的范围就是递增区间;令fx0,解不等式得的范围就是递减区间;④根据单调性求函数fx的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
7. 【答案】C.
第 9 页,共 19 页
精选高中模拟试卷
【解析】由即即
在
,令是减函数, ,
在即
,得:,则当
时,
, , ,
,
得,
,
是减函数,所以由,故选
8. 【答案】C
2
【解析】解:求导函数可得f′(x)=3x﹣12x+9=3(x﹣1)(x﹣3), ∵a<b<c,且f(a)=f(b)=f(c)=0. ∴a<1<b<3<c,
32
设f(x)=(x﹣a)(x﹣b)(x﹣c)=x﹣(a+b+c)x+(ab+ac+bc)x﹣abc, 32
∵f(x)=x﹣6x+9x﹣abc,
∴a+b+c=6,ab+ac+bc=9, ∴b+c=6﹣a, ∴bc=9﹣a(6﹣a)<∴a﹣4a<0,
2
,
∴0<a<4,
∴0<a<1<b<3<c,
∴f(0)<0,f(1)>0,f(3)<0, ∴f(0)f(1)<0,f(0)f(3)>0. 故选:C.
9. 【答案】A
【解析】【知识点】平面向量坐标运算 【试题解析】若反过来,若
,则,则
或
”成立的充分而不必要条件。
成立;
所以“”是“故答案为:A 10.【答案】D
第 10 页,共 19 页
精选高中模拟试卷
【解析】解:由A中不等式变形得:﹣2≤2x≤4,即﹣1≤x≤2, ∴A=[﹣1,2],
由B中y=lg(x﹣1),得到x﹣1>0,即x>1, ∴B=(1,+∞), 则A∩B=(1,2], 故选:D.
11.【答案】B
【解析】解:由f(x)在上是减函数,知 f′(x)=3x2+2bx+c≤0,x∈, 则
⇒15+2b+2c≤0⇒b+c≤﹣
.
故选B.
12.【答案】D
2
【解析】解:设函数y=f(x)﹣g(x)=x﹣lnx,求导数得
=
当当所以当
时,y′<0,函数在时,y′>0,函数在
时,所设函数的最小值为
上为单调减函数, 上为单调增函数
所求t的值为故选D
2
【点评】可以结合两个函数的草图,发现在(0,+∞)上x>lnx恒成立,问题转化为求两个函数差的最小值
对应的自变量x的值.
二、填空题
13.【答案】
11 8
【解析】因为正四棱锥OABCD的体积为2,底面边长为3,所以锥高为2,设外接球的半径为R,依轴
第 11 页,共 19 页
精选高中模拟试卷
截面的图形可知:R2(R2)2(6211)R 2814.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°, 在△ABC中,根据正弦定理得:BC=则这时船与灯塔的距离为故答案为
.
海里.
=
海里,
15.【答案】 4 .
【解析】解:画出满足条件的平面区域,如图示:
,
由,解得:A(3,4),
显然直线z=ax+by过A(3,4)时z取到最大值12, 此时:3a+4b=12,即+=1, ∴+=(+)(+)=2+
+
≥2+2
=4,
第 12 页,共 19 页
精选高中模拟试卷
当且仅当3a=4b时“=”成立, 故答案为:4.
【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题.
16.【答案】 2016 .
【解析】解:∵f(x)=f(2﹣x),
∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x). ∵f(x+1)=f(x﹣1),∴f(x+2)=f(x), 即函数f(x)是周期为2的周期函数, ∵方程f(x)=0在[0,1]内只有一个根x=, ∴由对称性得,f()=f()=0,
∴函数f(x)在一个周期[0,2]上有2个零点, 即函数f(x)在每两个整数之间都有一个零点, ∴f(x)=0在区间[0,2016]内根的个数为2016,
故答案为:2016.
17.【答案】 5 .
【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E, ∵CD⊥BC,∴CD∥AE, ∵CD=5,BD=2AD,∴在RT△ACE,CE=由
得BC=2CE=5
,
=
=10,
,解得AE==
,
=
,
在RT△BCD中,BD=则AD=5, 故答案为:5.
第 13 页,共 19 页
精选高中模拟试卷
【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.
18.【答案】
【解析】解:ρ=∴点P的极坐标为故答案为:
.
=.
,tanθ=
=﹣1,且0<θ<π,∴θ=
.
.
三、解答题
19.【答案】(1)an2n;(2)Tnn.
2(n1)考
点:1.一元二次方程;2.裂项相消法求和.
20.【答案】解:(1)设G是AA1的中点,连接GE,BG.∵E为DD1的中点,ABCD—A1B1C1D1为正方体,∴GE∥AD,又∵AD⊥平面ABB1A1,∴GE⊥平面ABB1A1,且斜线BE在平面ABB1A1内的射影为BG,∴Rt△BEG中的∠EBG是直线BE和平面ABB1A1所成角,即∠EBG=.设正方体的棱长为a,∴GEa,
第 14 页,共 19 页
精选高中模拟试卷
BG53a,BEBG2GE2a, 22∴直线BE和平面ABB1A1所成角的正弦值为:sinGE2;……6分 BE3(2)证明:连接EF、AB1、C1D,记AB1与A1B的交点为H,连接EH. ∵H为AB1的中点,且B1H=
11C1D,B1H∥C1D,而EF=C1D,EF∥C1D, 22∴B1H∥EF且B1H=EF,四边形B1FEH为平行四边形,即B1F∥EH, 又∵B1F平面A1BE且EH平面A1BE,∴B1F∥平面A1BE. ……12分 21.【答案】(1)【解析】
试题分析:(1)要求向量a,b的夹角,只要求得这两向量的数量积ab,而由已知a(ba)2,结合数量积的运算法则可得ab,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式aa,把
22;(2)27. 3考点:向量的数量积,向量的夹角与模.
【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cosa,b向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]内及余弦值求出两向量的夹角. 22.【答案】
abab求得这两个
【解析】解:(I)由题意可得:2
,解得c=1,a=2,b=3.
第 15 页,共 19 页
精选高中模拟试卷
∴椭圆E的方程为=1.
(II)假设▱ABCD能为菱形,则OA⊥OB,kOA•kOB=﹣1. ①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:取A
=1,解得y=
,
,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.
②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2). 联立
2222
,化为:(3+4k)x+8kx+4k﹣12=0,
∴x1+x2=﹣∴
,x1x2=.
kOA•kOB=====
,
假设
=﹣1,化为k2=﹣
,因此平行四边形ABCD不可能是菱形.
综上可得:平行四边形ABCD不可能是菱形.
(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6. ②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2). 联立
2222
,化为:(3+4k)x+8kx+4k﹣12=0,
∴x1+x2=﹣|AB|=
,x1x2=.
=.
.
点O到直线AB的距离d=∴S平行四边形ABCD=4×S△OAB=
第 16 页,共 19 页
精选高中模拟试卷
=2××=.
2则S=
=<36,
∴S<6.
因此当平行四边形ABCD为矩形面积取得最大值6.
23.【答案】
【解析】(1)易知A0,1,B0,1,设Px0,y0,则由题设可知x00 ,
直线AP的斜率k1y01y1,BP的斜率k20,又点P在椭圆上,所以 x0x0
(4分)
22x0y01y01y011y01,x00,从而有k1k22. 4x0x0x04第 17 页,共 19 页
精选高中模拟试卷
24.【答案】(1) 【解析】
xy1;(2)证明见解析. 4322
试题分析: (1)由题中条件要得两个等式,再由椭圆中a,b,c的等式关系可得a,b的值,求得椭圆的方程;(2)可设直线PQ的方程,联立椭圆方程,由根与系数的关系得y1y26m9yy,,得123m243m24直线lPA,直线lQA,求得点 M、N坐标,利用FMFN0得FMFN.
第 18 页,共 19 页
精选高中模拟试卷
91a24b21,c1a2,试题解析: (1)由题意得,解得
a2b3.a2b2c2,x2y21. ∴椭圆C的方程为43又x1my11,x2my21, ∴M(4,
2y12y22y12y2),N(4,),则FM(3,),FN(3,),
my11my21my11my213622y12y24y1y23m4FMFN999990 226m9my11my211m(y1y2)my1y212m23m43m24∴FMFN
考点:椭圆的性质;向量垂直的充要条件.
第 19 页,共 19 页
因篇幅问题不能全部显示,请点此查看更多更全内容