您好,欢迎来到帮我找美食网。
搜索
您的当前位置:首页20分数的速算与巧算

20分数的速算与巧算

来源:帮我找美食网


分数的速算与巧算

1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握

裂项技巧及寻找通项进行解题的能力

2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数

与分数的主要利用运算定律进行简算的问题. 4、通项归纳法

通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨

一、裂项综合 (一)、“裂差”型运算 (1)对于分母可以写作两个因数乘积的分数,即么有

1ab1(11b)

1ab形式的,这里我们把较小的数写在前面,即ab,那

baa1(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:

n(n1)(n2)1n(n1)(n2)1n(n1)(n2)(n3),

1n(n1)(n2)(n3)[111(n1)(n2)1形式的,我们有:

] 1(n1)(n2)(n3)]

12n(n1)[3n(n1)(n2)裂差型裂项的三大关键特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。 (二)、“裂和”型运算:

常见的裂和型运算主要有以下两种形式:

(1)

ababaabbab1b1a (2)

abab22a2abb2ababba

裂和型运算与裂差型运算的对比:

裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项

(1) 122334...(n1)n13(n1)n(n1)

14(n2)(n1)n(n1)(2) 123234345...(n2)(n1)n

二、换元

解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.

三、循环小数化分数

1、循环小数化分数结论:

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

1

分子 纯循环小数 循环节中的数字所组成的数 混循环小数 循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差 分母 n个9,其中n等于循环节所含的数字按循环位数添9,不循环位数添0,组成分母,其中个数 9在0的左侧 ; 0.ab110120···0.aa9ab99120; 0.0ab111··ab99110ab9901; 0.abc11··abca990,„„

2、单位分数的拆分:

例:

=

=

=

1=

1=



分析:分数单位的拆分,主要方法是:

从分母N的约数中任意找出两个m和n,有:

1N1(mn)N(mn)mN(mn)nN(mn)=

1A1B

本题10的约数有:1,10,2,5.。 例如:选1和2,有:

1101(12)10(12)110(12)210(12)130115

本题具体的解有:

1101111110112160114135115130

例题精讲

模块一、分数裂项 【例 1】

112341123451345616789178910

【解析】 原式111111 31232342343457898910111119312389102160

3【巩固】 32345171819201111111【解析】 原式3[(...)]

3123234234345171819181920113192011139 123181920181920684012343......

【例 2】 计算:

51237234198910 .

【解析】 如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,„„这一公差为2的等差数列(该数列的第n个数恰好为n的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

2

原式32123342343168910

11112832891089101232341232343311111111112212232334899109102334111111112212910910233431111222902102n32

 7416015 2315

也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为2n3,所以

nn1n23nn1n2n12n3nn1n2,再将每一项的

2n1n2与

分别加在一起进行裂项.后面的过程与前面的方法相同.

571719【巩固】 计算:1155( )891091011571719【解析】 本题的重点在于计算括号内的算式:.这个算式不同234345891091011234345于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子

是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式. 观察可知523,734,„„即每一项的分子都等于分母中前两个乘数的和,所以

52343458910910112334910 2343459101171719

134124141535110 111911111111101124359113445

111111111111111111011224354681091134451111118128311553112210311332533

所以原式1155【巩固】 计算:

312453155651.

42356534671210111314

【解析】 观察可知原式每一项的分母中如果补上分子中的数,就会是5个连续自然数的乘积,所以可以先

将每一项的分子、分母都乘以分子中的数.即:

原式3212345422345652345671221011121314

现在进行裂项的话无法全部相消,需要对分子进行分拆,考虑到每一项中分子、分母的对称性,可以用平方差公式:32154,42264,52374„„

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

3

【解析】 原式3212345154123454223456264234565234567374345671221011121314101441011121314

11111112132343454564444101112131412345234563456711111112233434451112121311111

110111213111213141234234523453456111112231213123411121314

181211141813087561611221212133124411112131418977111121314

【例 3】

122323423452341012349【解析】 原式223234234523410213141101 2232342341011121212311231234362879912349

1234910

【例

234910362880011114】 11212312100

【解析】 本题为典型的“隐藏在等差数列求和公式背后的分数裂差型裂项”问题。此类问题需要从最简单的项开始入手,通过公式的运算寻找规律。从第一项开始,对分母进行等差数列求和运算公式的

代入有121211(11)122232122,

1121(12)2222231,„„,

20010199101原式【巩固】 23431001012(14101)1

501(12)(12)(123)(123)(1234)(12349)(12350)原式=

213610361111=()+(36133(12)(123)11112+

3+

4+

51015112251275111)+()+(610122512754(123)(1234)31121123+„+

50

)=

12741275

100【巩固】 【解析】 221(12)1(12)(1299)(12100)

(12)(123),„„,

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

4

100(1299)(12100)11299112100,所以

1210015049 15050505023101【巩固】

1(12)(12)(123)(1239)(12310)原式11

【解析】 原式1(2133364610104555)

111111111

3366104555111

55155

15112【例 5】

13121711219112111112113112 .

【解析】 这题是利用平方差公式进行裂项:a2b2(ab)(ab),

原式(((121224466881010121214111111111111) 44668810101212142113 )1421431222)()()()()(1)

【巩固】 计算:【解析】 原式523227342221578222

2222222212233478111111112222222

2233478163 1286431312221223222432872【巩固】 计算:

2515122717122199311993122199511995122 .

【解析】 原式122221111222223151711993119951

222997199419962446

11199711111997997997199419961996244621996【巩固】 计算:

12132235325750299101 .

【解析】 式子中每一项的分子与分母初看起来关系不大,但是如果将其中的分母根据平方差公式分别变为

222221,41,61,„„,1001,可以发现如果分母都加上1,那么恰好都是分子的4倍,

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

5

所以可以先将原式乘以4后进行计算,得出结果后除以4就得到原式的值了.

2222246100原式222 2421416110011111111212121 2421416110011111150413355799101

111111111501 42335579910111115063 50150124101101421014435665788791010911n22【巩固】 2213

1n12【解析】 (法1):可先找通项an原式(11)(11n1111(n1)(n1)

1335571155 5(1)552111111238818535)(11)(1179)(11911)(法2):原式(2)()(26310514711895011104187511)(327329)(5095011)

6115

11【例 6】

2112(1312)(1113)【解析】 n1111(1)(1)(1)23n111111233441999

111(1)(1)(1)2319991211n12() n2(n1)(n2)n1n221119995)220001原式=()()()(【巩固】 计算:111211=1199910001000

12312200712112() 【解析】 先找通项公式an12nn(n1)nn1

原式1212(21)22213(31)212007(20071)22007

200710041223342007200820081111【巩固】  335357357212 2 

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

6

【解析】 先找通项:an1131241352n111461122n13n110121nn2,

原式351911

111111 13359112446101211111121112212 175264

【例 7】

12212323234(1n)n1234123502350【解析】 找通项an2342314232(1n)n23410342521n(n1)n(n1)2562856472

342545365647原式4518453622314,

50522326通过试写我们又发现数列存在以上规律,这样我们就可以轻松写出全部的项,所以有 原式【例 8】

123232248494750224950485125051495223122

333333333312312341226n(n1)(2n1)22212n22n12116an3() 【解析】 2233n(n1)12n3n(n1)3nn111212123123412264原式=[()()()(31223342111111126127)]=

23(1127)5281

【巩固】 1111122221319911(n1)121

9898(981)(981)9999(991)(991)an1【解析】

(n1)22(n1)1(n1)2n(n2)原式223122(21)(21)33(31)(31)

33424453556498989997999910098219910014950

【例 9】 计算:

222213223199222991 【解析】 通项公式:an原式223122n1n11n1133n1,

nn244(41)(41)9898(981)(981)9999(991)(991)2(21)(21)(31)(31)

33424453556498989997999910098

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

7

21233234243459897989929998991002129910029950

 【巩固】 计算:

12110050002222005000n22999999005000【解析】 本题的通项公式为

n100n100n222n10n05000,没办法进行裂项之类的处理.注意到分母

500050n00n0015000n10000可以1看出00如果把n换成,1n的话分母的值不变,所以可以把原式子中的分数两两组合起来,最后单独剩下一个

5025050005000n2.将项数和为100的两项相加,得

n100n5000100n22100n100100n50001n100n222n100n50002n200n10000n100n5000222,

所以原式249199.(或者,可得原式中99项的平均数为1,所以原式19999)

24【例 10】

123145123【解析】 虽然很容易看出=

11122 222220211121210

1111123,

45=

45„„可是再仔细一看,并没有什么效果,因为这不

6象分数裂项那样能消去很多项.我们再来看后面的式子,每一项的分母容易让我们想到公式 ,于是我们又有

1123n2222=n(n1)(2n1)..减号前面括号里的式子有10项,减

号后面括号里的式子也恰好有10项,是不是“一个对一个”呢?

11111124222222021112121023452

=24=24

111231451451116

202112323510112111124

2021243465202221 1123=24=242311112434546520222120211124146模块二、换元与公式应用

【例 11】 计算:1333537393113133153

【解析】 原式132333431431532343143

111160.=6=61=

1120221223101111

115151224576004281273323

278

8128

132435911 【巩固】

【解析】 原式21213131101101

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

8

21311012222310222222921231010112110

103756【巩固】 计算:1232343458910

【解析】 原式2221332144219921

23492349

3333123912349

245451980

111111【例 12】 计算:123456

3333332【解析】 法一:利用等比数列求和公式。

71113原式

1137264131172932

法二:错位相减法.

设S1则3S311313132132131333131344135135136

136,3SS3,整理可得S1364729.

法三:本题与例3相比,式子中各项都是成等比数列,但是例3中的分子为3,与公比4差1,

所以可以采用“借来还去”的方法,本题如果也要采用“借来还去”的方法,需要将每一项的分子变得也都与公比差1.由于公比为3,要把分子变为2,可以先将每一项都乘以2进行算,最后再将所得的结果除以2即得到原式的值.由题设,2S2去”的方法可得到2S22223232233234235236,则运用“借来还

1363,整理得到S12223647292.

2【例 13】 计算:【解析】 原式(246100)(13599)12391098321222222222

(21)(43)(65)(10099)10(21)(21)(43)(43)(65)(65)(10099)(10099)

100123499100505015010010022

【巩固】 ⑴314159263141592531415927________;

⑵123428766224688766________.

【解析】 ⑴ 观察可知31415925和31415927都与31415926相差1,设a31415926,

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

9

原式a2a1a1a2a211 ⑵ 原式1234287662212348766

123487661000010000000022

【巩固】 计算:12223242200522006220072 【解析】 原式20072200625242322212 (20072006)(20072006)(20052004)(20052004)(32)(32)1 2007200620052004321 122007120072015028

22【例 14】 计算:【解析】 原式1212222232322223434322234545222422000200120002001222

20002 121223233434454520002001200020011223344520002001 213243542001200021(1232)(2320012000351999)344200020002001200020014000200020014145220012

222222000个2相加

【例 15】 20078.58.51.51.5101600.3 .

【解析】 原式20078.51.58.51.5101600.32007108.51.5101600.3

200771600.312.50.312.2

【巩固】 计算:53574743 .

【解析】 本题可以直接将两个乘积计算出来再求它们的差,但灵活采用平方差公式能收到更好的效果.

原式5525524524525522245222

554555455545100022

【巩固】 计算:1119121813171416 . 【解析】 本题可以直接计算出各项乘积再求和,也可以采用平方差公式.

原式15242152321522215212

154123422222

90030870

其中12223242可以直接计算,但如果项数较多,应采用公式

nn12n1进行计算. 6【巩固】 计算:1992983974951 .

12n2221【解析】 观察发现式子中每相乘的两个数的和都是相等的,可以采用平方差公式. 原式5049504950485048501501

5049250502250491249122222225049 49

48222212

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

10

50492216495099

5049492533 492510033

492567 82075 【巩固】 看规律 1312,132332,13233362„„,试求6373.143

原式1323.1431323.531231412345

22105151051510515901201080022

【例 16】 计算:(1124246111111【解析】 令1a,b24624611 原式(a)ba(b)

661)(111)(1121416)(1214),则:

ab116bab116a

166611111111111111【巩固】 (1)()(1)()

23423452345234(ab)1

【解析】 设a【巩固】 11112113114,则原式化简为:(1+a)(a+)-a(1a+)=

5551111111111111412131415111213141512131411112131

【解析】 设

111121131141a,

121131141b,

原式abab151115111ab 5151aab151b

(ab)1

1511【巩固】 (51【解析】 设511171756111111111111111)()()()9117911135791113791111111A,B, 911791111AB1313

原式ABAB113113

AAB113B

AB

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

11

1131512165

13141111111111115234562345611112345【巩固】 计算1【解析】 设1

12

131415A,

12131415B

16原式AB11A6621111ABBABAABB6666(AB)16

991129239123123【巩固】 1

1010223103410234234【解析】 设t【巩固】 (21122323349102910,则有t2t122334111t1122(1t)ttttt222222

910)3434)(910910)12(11223234122910)(t223123412

【解析】 设t【巩固】 计算

1223,则有t2t121(1t)(t12)tt(tt)

12341111200911341111120091

【解析】 设N34111. 原式=

121N+

1111=

12N1N+

11NN1 =

N2N1N12N11.

2009N【巩固】 (7.886.775.66)(9.3110.9810)(7.886.775.6610)(9.3110.98) 【解析】 换元的思想即“打包”,令a7.886.775.66,b9.3110.98,

则原式a(b10)(a10)b(ab10a)(ab10b)ab10aab10b10 (ab)

10(7.886.775.669.3110.98)100.020.2

【巩固】 计算(10.450.56)(0.450.560.67)(10.450.560.67)(0.450.56) 【解析】 该题相对简单,尽量凑相同的部分,即能简化运算.设a0.450.56,b0.450.560.67,

有原式(1a)b(1b)ababaabba0.67

三、循环小数与分数互化

,结果保留三位小数. 【例 17】 计算:0.1+0.125+0.3+0.160.1111+0.1250+0.3333+0.1666=0.7359=0.736 【解析】 方法一:0.1+0.125+0.3+0.16方法二:0.1+0.125+0.3+0.1619183915901118185372 0.73610.36 ; 【巩固】 ⑴ 0.54 ⑵ 1.21.24 27

【解析】 ⑴ 法一:原式

545903699499041189999019.

法二:将算式变为竖式:

0.5444440.363636重庆专注教育考试服务中心

0.908080江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

12

可判断出结果应该是0.908,化为分数即是⑵ 原式1122419111231920··9089990899990.

999279992790.120.230.340.780.89 【巩固】 计算:0.010.120.230.340.780.89 【解析】 方法一:0.01909090901121317181216= 909090909090900.120.230.340.780.89 方法二:0.01190112123234378789890

0.020.030.040.080.09=0+0.1+0.2+0.3+0.7+0.8+0.01(1+2+3+4+8+9) =2.1+0.012.127

902.10.32.4 2919993309991921990186199037552652913759995211919906669991

0.186 0.1920.3750.526 (2)0.330【巩固】 计算 (1)0.291【解析】 (1)原式(2)原式

9999903301855999990813309901

乘以一个数a时,把1.23误看成1.23,使乘积比正确结果减少0.3.则正确结果该【例 18】 某学生将1.23是多少?

【解析】 由题意得:1.23a1.23a0.3,即:0.003a0.3,所以有:

所以1.23a1.23903900a310.解得a90,

1119090111

与0.179672相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位【巩固】 将循环小数0.027小数是多少? ×0.179672【解析】 0.027279991796729999991371796729999994856999999 0.004856循环节有6位,100÷6=16„„4,因此第100位小数是循环节中的第4位8,第10l位是5.这样四舍五入后第100位为9.

,,,,0.51【例 19】 有8个数,0.5139252413,4725是其中6个,如果按从小到大的顺序排列时,第4个数是

,那么按从大到小排列时,第4个数是哪一个数? 0.512,5=0.5,240.5106,13=0.52 【解析】 =0.6472539即24<051<0.51<13<5<2,8个数从小到大排列第4个显然有0.5106<0.51<0.51<0.52<0.5<0.6472593,所以有口<口<24<0.51<0.51<13<5<2.(“□”是0.51,表示未知的那2个数).所以,这8

472593重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

13

. 个数从大到小排列第4个数是0.51a7【例 20】 真分数化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a,3=0.428571,4=0.571428,5=0.714285.因, 6=0.857142=0.285714777772是多少?

, 【解析】 =0.14285771此,真分数

a7化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因

a7.为1992÷27=73„„21,27-21=6,而6=2+4,所以=0.857142,即a6.

【巩固】 真分数

a7化成循环小数之后,从小数点后第1位起若干位数字之和是9039,则a是多少?

a7【解析】 我们知道形如的真分数转化成循环小数后,循环节都是由1、2、4、5、7、8这6个数字组成,

只是各个数字的位置不同而已,那么9039就应该由若干个完整的142857和一个不完整

142857组成。 903912457833421,而21276,所以最后一个循环节中所缺的数字之和为6,经检验只有最后两位为4,2时才符合要求,显然,这种情况下完整的循环节为“857142”,因此这个分数应该为

【巩固】 真分数

a767,所以a6。

化成循环小数之后,小数点后第2009位数字为7,则a是多少?

a7【解析】 我们知道形如

200220091的真分数转化成循环小数后,循环节都是由6位数字组成,200963345,

因此只需判断当a为几时满足循环节第5位数是7,经逐一检验得a3。

【例 21】

28720022009化成循环小数后第100位上的数字之和是_____________.

1287【解析】 如果将

们 发现

和转化成循环小数后再去计算第100位上的数字和比较麻烦,通过观察计算我

2002200912871,而10.9,则第

100位上的数字和为9.

写成最简分数时,分子和分母的和是58,则三位数abc_________ 【巩固】 纯循环小数0.abc转化为分数,应该是【解析】 如果直接把0.abcabc999,因此,化成最简分数后的分母应该是999的约数,我们

将999分解质因数得: 9993337,这个最简分数的分母应小于58,而且大于29,否则该分数就

变成了假分数了,符合这个要求的999的约数就只有37了,因此,分母应当为37,分子就是

583721,也就是说0.abcabc9991abc372712137,因此abc2127567.

111【例 22】 在下面的括号里填上不同的自然数,使等式成立.

(1)(2)

11011012011201111;



【解析】 单位分数的拆分,主要方法是从分母N的约数中任意找出两个数m和n,有:

1NmnN(mn)mN(mn)nN(mn)1A1B,

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

14

从分母n的约数中任意找出两个m和n (mn),有:

1NmnN(mn)mN(mn)110nN(mn)1210(12)1A1B

(1) 本题10的约数有:1,10,2,5. 例如:选1和2,有:

110(12)210(12)130115;

从上面变化的过程可以看出,如果取出的两组不同的m和n,它们的数值虽然不同,但是如果m和n的比值相同,那么最后得到的A和B也是相同的.本题中,从10的约数中任取两个数, 共有C42410种,但是其中比值不同的只有5组:(1,1);(1,2);(1,5);(1,10);(2,5),所以本题共可拆分成5组.具体的解如下:

11011012012011111101121602114135115130.

(2)10的约数有1、2、5、10,我们可选2和5:

5210(52)510(52)10(52)16115

另外的解让学生去尝试练习. 【巩固】 在下面的括号里填上不同的自然数,使等式成立.

110111011111111

【解析】 先选10的三个约数,比如5、2和1,表示成连减式521和连加式521.

则:

4101120801104016116115

117134185如果选10、5、2,那么有:

13.

另外,对于这类题还有个方法,就是先将单位分数拆分,拆成两个单位分数的和或差,再将其中

的一个单位分数拆成两个单位分数的和或差,这样就将原来的单位分数拆成了3个单位分数的和或差了.比如,要得到

1101111121,根据前面的拆分随意选取一组,比如

1110112160,

再选择其中的一个分数进行拆分,比如

【例 23】 【解析】

【巩固】 =

1011111131145111111111115611,所以

1101131601156.

1

1145721120-1181301140511358191545

1111=

11

1【解析】 10410120804016

注:这里要先选10的三个约数,比如5、2和1,表示成连减式5-2-1和连加式5+2+1.

【例 24】 所有分母小于30并且分母是质数的真分数相加,和是__________。 【解析】 小于30的质数有2、3、5、7、11、13、17、19、23、29共十个,分母为17的真分数相加,和

等于

(1171617)(2171517)(3171417)(817917)81712。

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

15

类似地,可以求出其它分母为质数的分数的和。因此,所求的和是

121231251271211121312171212191223122912

1235689111459

【巩固】 分母为1996的所有最简分数之和是_________。 【解析】 因为1996=2×2×499。所以分母为1996的最简分数,分子不能是偶数,也不能是499的倍数,

499与3×499。因此,分母为1996的所有最简真分数之和是

)111498

1996199619961996199619961996199611=123568911=59 2211125】 若,其中a、b都是四位数,且a2004ab()()()(1200412004120041200412004(12)12004(13)22004(23)32004(34)22004(12)32004(13)32004(23)42004(34)160121801615010146761300612672133401350711995319935011495997999【例

【解析】 2004的约数有:1,2004,2,1002,3,668,4,501,满足题意的分拆有:



【巩固】 如果

120091A1B,A,B均为正整数,则B最大是多少?

1NnN(mn)【解析】 从前面的例题我们知道,要将

1NmnN(mn)mN(mn)按照如下规则写成

1A1B1A1B的形式:

,其中m和n都是N的约数。如果要让B尽可能地

大,实际上就是让上面的式子中的n尽可能地小而m尽可能地大,因此应当m取最大的约数,而n应

取最小的约数,因此m2009,n1,所以B20092008. 课后练习: 练习1.

112123123412345123456123456713141516171【解析】 原式12123123412345123456123456711211215040112112112311231112341123456723456

1234567

11

50395040

238910)练习2. (1)(2)(3)(8)(92349

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

16

【解析】 通项为:ann原式1222nn142n(n1)nn182n2n1,

332459921034678936288

练习3. 计算:133353993___________. 【解析】 与公式12n12n3332n2n142相比,133353993缺少偶数项,所以可

以先补上偶数项.

原式132333100323431003

141410010121250223333

100101222222314505122

5010125112497500

111200723

1111112007232008220081练习4. 计算:112

【解析】 令a

121312007,b121312008,

12008原式1ab1bababaabba

····110.9811 (结果表示成循环小数) 练习5. ⑴ 0.150.2180.3; ⑵ 2.234111【解析】 ⑴原式15190218231137111112345679 0.0123456799909111993111819999999992⑵2.2342342990月测备选

990999900.981112211120.090.020.113 2.2349011902232,0.98980.982,所以2.2342329899124299012290,

【备选1】计算:

23!234!99100! .

【解析】 原式为阶乘的形式,较难进行分析,但是如果将其写成连乘积的形式,题目就豁然开朗了.

原式123311231121231234411234119912310010011231001

111231001234111 121231002100!12312312399

【备选2】计算:

12122232322200420052004200522200520062005200622

【解析】 (法1):可先来分析一下它的通项情况,

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

17

ann(n1)n(n1)22n2n(n1)(n1)2n(n1)nn1n1n

20042005)(2006200520052006)

原式= ()()()()(2233420052005 20052401020062006n(n1)n(n1)32222132435420052004145(法2):an32n2n1nn3221nn221n(n1)

【备选3】计算:【解析】 原式123200612320062

122006200612013021

123200612320066211267393581232006【备选4】计算:【解析】 令

621126458739458378621739458378739458947358947207126358947207358947

739358458947a;

739358458947b,

原式ab2009999003783783786213789abab207207207126207200911 (结果表示为循环小数) 999909901【备选5】计算【解析】 由于

所以

1999001,0.000011199990, 0.000019990099990而9009917139901919901,

0.000010.00000000900991, 0.00001所以,2009999002009112009110.000000009009919999099019901

1120090.0000000000100120090.00000002011009 0.00000000000091

重庆专注教育考试服务中心

江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018

邮箱:focusedu@163.com 网址:www.test-focus.com

18

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- banwoyixia.com 版权所有 湘ICP备2023022004号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务