第1章 引言、设计任务描述、思路及方案
1.1
引言
在本次设计中,其目的是得到一个超外差调频接收机机。在超外差式调频接收机的设计过程中,应将其分为高频放大、混频、本振、中放、限幅、鉴频、低频放大七个部分。整个电路的设计必须注意几个方面。选择性好的级,应尽可能靠近前面,因在干扰及信号都不大的地方把干扰抑制下去,效果最好。如干扰及信号很大,则由于晶体管的非线性,将产生严重的组合频率及其他非线性失真,这时滤除杂波比较困难。为此,在高级接收机中,输入电路常采用复杂的高选择电路。
1.2设计任务描述
设计题目:超外差式调频接收机
1设计目的:巩固已学的理论知识,能够建立无线调频接收机的
整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,正确设计、计算接收机的各个单元电路。
2基本要求:(1)设计一个超外差式调频接收机, (2)设计指标
1、接收频率范围 85~108MHz 2、灵敏度 ≤1mV 3、选择性 ≥50dB
4、频率特性 通频带为200KHz 5、输出功率 ≥100mW
1.3设计思路
根据此次课程设计的要求,我设计的是超外差式调频接收机。整个电路由六部分组成,分别为高频放大、混频、本振、中放、鉴频、低频放大。
(1) 高频放大:高频放大器是用来放大高频信号的器件(在接收机中,高 放所放大的对象是已调信号,它除载频信号外还有边频分量)。根据高放的对象是载频信号这一情况,一般采用管子做放大器件,而且并联谐振回路作为负载,让信号谐振在信号载频(若有边频分量,便要设计回路的通频带能通过边频,使已调信号不失真)。这样做的好处是:1)回路谐振能抑制干扰;2)并联回路谐振时,其阻抗很大,从而可输出很大的信号。
(2)混频:混频是将高频放大信号和本振信号混合,输出一个中频信号,在调频电路中,本振信号必须是的,这是与调幅电路最大的一个区别。混频电路是一种典型的频谱搬移电路,可以用相乘器和带通滤波器来实现这种搬移。 (3)本振:本振电路用LC谐振回路来产生一个稳定的本地振荡频率,将这个稳定的谐振频率与高频放大输出信号混频,得到一个中频信号。
(4)中放:如果外来信号和本机振荡相差不是预定的中频,就不可能进入放
1
大电路。因此在接收一个需要的信号时,混进来的干扰电波首先就在变频电路被剔除掉,加之中频放大电路是一个调谐好了的带有滤波性质的电路,所以接收机的选择性指标很高。超外差式接收机能够大大提高收音机的增益、灵敏度和选择性。因为不管电台信号频率如何都变成为中频信号,然后都能进入中频放大级,所以对不同频率电台都能够进行均匀地放大。中放的级数可以根据要求增加或减少,更容易在稳定条件下获得高增益和窄带频响特性。此外,由于中频是恒定的,所以不必每级都加入可变电容器选择电台,避免使用多联同轴可变电容器,而只需在调谐回路和本振回路用一只双连可变电容器就可完成接收。
(5)鉴频:在鉴频器部分,采用比例鉴频器,普通鉴频器的线性范围较宽,调整较易,但在鉴频器前必须加上一级限幅器,而比例鉴频器则不需要但是为了得到良好的限幅特性,必须仔细调整比例鉴频器的工作状态与电路参数,也可以在前一级加一个限幅器。
(6)限幅:本次设计的限幅电路采用二极管限幅器。
(7)低频放大:一般从鉴频器输出的信号都比较小,为了得到我们所需的信号,必须将输出信号进行放大。一般采用三极管放大电路来实现这一功能。因为本次设计是音频信号,所以采用运算放大器效果比较好。
高频电路很容易受到干扰,所以对信号的要求比较高,在中频放大器电路的输出端,如果直接接鉴频器,很可能得到很多不需要的波形,用滤波器很难滤除,所以在鉴频器的输入端加一级限幅器,去除不需要的波,使输出更为纯净。 1.4设计方案
方案一:
电路的开始部分是由高频放大电路和本振信号混频,输出一个中频信号。因为这是超外差调频接收机,所以混频电路和调幅接收机有着明显的不同,在调频电路中,本振电路是的。在放大电路部分,采用场效应管共源极放大电路。本振电路才用LC振荡电路,两个信号分别输入混频器,得到一个中频信号。
为了得到高的增益,而整个电路的增益取决于中放,同时也抑制了邻近干扰。在中频放大电路的输出端,接一个限幅器,其目的是如果直接接鉴频器,很可能得到很多不需要的波形,用滤波器很难滤除,所以在鉴频器的输入端加一级限幅器,去除不需要的波,使输出更为纯净。鉴频器是将原调制信号解调出来,在本次设计中采用比例鉴频器。为了能够得到我们所需要的效果,在电路的最后采用低频放大电路。
超外差式收音机的中频放大电路采用了固定调谐的电路,这 - 特点使它比其他接收机优越得多,综合起来有如下优点: (1) 用作放大的中频,可以选择那些易于控制的、有利于工作的领率 ( 我国采用的中频频率为 465 千赫 ) ,以便适合于管子和电路的性质,能够得到较为稳定和最大限度的放大量。
(2) 各个波段的输入信号都变成了固定的中频,电路将不因外来频率的差异而影响工作,这样各个频带就能够得到均匀的放大,这对于频率相差很大的高频信号 ( 短波 ) 来说,是特别有利的。
(3) 如果外来信号和本机振荡相差不是预定的中频,就不可能进入放大电路。因此在接收一个需要的信号时,混进来的干扰电波首先就在变频电路被剔除掉,加之中频放大电路是一个调谐好了的带有滤波性质的电路,所以接收机的选择性指标很高
2
方案二:
电路的开始部分和方案一基本一样,都是将高频放大信号和本振信号经过混频器,输出一个中频信号。在中频放大电路设计中,采用两级以上的中频放大电路。鉴频器采用比例鉴频器,所以在鉴频器的输入端不使用限幅器,比例鉴频器的效果比普通鉴频好很多,所以可以不使用限幅器。在整个电路的最后,还是采用三极管放大电路。
综合考虑,第一种方案更适合我,利用第一种方案可以很好的利用我本学期所学的知识。所以我采用第一种方案。
第2章 设计总体方案
2.1 工作原理
在超外差式调频接收机的设计过程中,应将其分为高频放大、混频、本振、
3
中放、限幅、鉴频、低频放大七个部分。整个电路的设计必须注意几个方面。选择性好的级,应尽可能靠近前面,因在干扰及信号都不大的地方把干扰抑制下去,效果最好。如干扰及信号很大,则由于晶体管的非线性,将产生严重的组合频率及其他非线性失真,这时滤除杂波比较困难。为此,在高级接收机中,输入电路常采用复杂的高选择电路。为了使混频和本振分别调到最佳状态,要采用单独的本振。
超外差式接收机能够大大提高接收机的增益、灵敏度和选择性。因为不管电台信号频率如何都变成为中频信号,然后都能进入中频放大级,所以对不同频率电台都能够进行均匀地放大。中放的级数可以根据要求增加或减少,更容易在稳定条件下获得高增益和窄带频响特性。此外,由于中频是恒定的,所以不必每级都加入可变电容器选择电台,避免使用多联同轴可变电容器,而只需在调谐回路和本振回路用一只双连可变电容器就可完成选台。超外差电路的典型应用是超外差接收机,其优点是:①容易得到足够大而且比较稳定的放大量。②具有较高的选择性和较好的频率特性。③容易调整。缺点是电路比较复杂,同时也存在着一些特殊的干扰,如像频干扰、组合频率干扰和中频干扰等。随着集成电路技术的发展,超外差接收机已经可以单片集成。 2.2 电路方框图
本振 输入 高放 混频 中放 放大 鉴频器 限幅
第3章 各部分电路分析
3.1 高频放大电路
高频放大器是用来放大高频信号的器件,在接收机中,高频放大器放所放大
4
的对象是已调信号,它除载频信号外还有边频分量)。根据高放的对象是载频信号这一情况,一般采用管子做放大器件,而且并联谐振回路作为负载,让信号谐振在信号载频(若有边频分量,便要设计回路的通频带能通过边频,使已调信号不失真)。这样做的好处是:1)回路谐振能抑制干扰;2)并联回路谐振时,其阻抗很大,从而可输出很大的信号。
对高放的主要要求是:(1) 工作稳定:放大器可能会产生正反馈,它影响放大器的稳定工作,严重时,会引起振荡,使放大器变成振荡器,从而完全破坏了放大器的正常工作。因此,在正常工作中要保证放大器远离振荡状态而稳定的工作。(2)选择性好,有一定的通频带。(3)失真小,增益高,并且工作频率变化时增益变动不应过大,工作频率越高,晶体管的放大能力越小,增益越低。增益变化太大时,则灵敏度相差将很悬殊。高频放大电路如图3.1所示。
图3.1.1 高频放大电路
图中了L、C、CT1及CT2为输入、输出回路元件,他们均调谐于信号频率,R及Cs为自编元件,决定工作点。LN及CN为中和元件。在高频时,为了抵消Cdg之反馈,采用了LN及CN。当wLN1wLe(即LN及CN串联的谐振频率低wCN1相等wCdg于工作频率w,LN于CN之路呈感性)且等效电感Le之感抗值wLe与
时,则IN与Ir数值相等,符号相反,互相抵消。调节CN可使wLe=
1。Cgs wCdg 5
图3.1.2 等效电路
图3,1.1中管子用交流等效电路代替,图中未考虑Cdg,即不考虑反馈,只考虑正向放大,由此图可求出输出电压。图3.1.2中CM为接线电容,Cds为漏极输出电容,CdsCCT2CM与L谐振,其谐振电阻为R0,将Ri与R0=Q0w0L合并为
Uk00gmR0L(R0LRi//R0),便得谐振时的输出电压为
UgsU0gmUgsR0L
于是电压增益为
k0U0gmR0L Ugs对场效应管,主要关心电压增益,至于功率增益,由于放大器的输入电流很小,输入端就不消耗什么功率,因而功率增益很高,于是功率增益便不太重要。
本次设计的高频放大电路运用的核心器件是场效应管。场效应管放大器有以下优点:
(1) 场效应管栅流小,输入阻抗高, kp大。
(2) 放大时工作在ids几乎不随uds改变的区域,输出阻抗高。
(3) 因输入输出阻抗高,故回路可直接与管子相连,而不一定要经过阻抗
变换器。当然,在频率相当高时,因输入输出阻抗急剧下降,并且为了匹配,场效应管亦应通过阻抗变换网络与回路相连。
(4) 内部反馈比晶体管小。这是因为反馈导纳比普通晶体管的小。在频率
很高时,通过Cdg的反馈较大,这时可用中和法消除Cdg的影响。
(5) 场效应管的转移特性为平方曲线,不产生包络失真、交叉调制、三阶
互调,阻塞电平可达3-4V。当然,实际特性不可能是理想平方曲线,因而总会有些失真,不过他比一般的晶体管要小的多。 (6) 噪声系数小。 3.2 本振电路
6
在本次设计中,采用改进型电容三点式振荡电路。因为本振电路的输出频率要与高频放大电路的输出信号进行混频,得到一个中频信号。所以要求本振电路的输出频率必须很稳定,所以采用了改进型电容三点式。如果本振电路的输出不稳定,将引起变频器输出信号的大小改变,振荡频率的漂移将使中频改变。振荡器的振幅与振荡管的特性以及反馈电路的特性有关,当温度及其它管子与反馈电路的特性改变时,振幅也就会改变。为了稳定振幅,可在各波段振荡器的反馈线圈上并联不同的电阻以平滑电抗元件的频率特性,还可用自动增益控制稳定振幅。本次设计的电容改进型电路图如下所示:
图3.2.1 电容反馈改进振荡电路
图3.2.2 图3.2.1等效电路
图3.2.1是一个电容反馈改进振荡器电路,其交流等效电路电路如图
3.2.2所示。图3.2.2中C为
CC3
C4C5
C4C57
由图。3.2.2知此电路中是基极接地,CE之间为C1,BE之间为C2,CB之间为L与C串联的等效电抗;在振荡频率处,选择w0L11,w0Lw0Le,w0Cw0C即L与C串联后等效为一个电感Le,因此此电路是电容反馈振荡器。因为振频等于谐振频率w0,w0决定于w0L1 w0C1
111C1C2C式中 C由上式可得
f02L11111C1C2C
若选择C1》C,C2》C,则f0与C1及C2近似无关,这样,与C1,C2并联的分布电容如C11及C22对频率的影响很小了,频率稳定得以提高。
对于提高振荡电路的稳定度有以下几种方法:
(1)提高回路的Q值。Q值高,可使频率稳定。回路Q值主要由电感的Q值决定,故要提高电感的Q值。为此应尽量减小损耗而加大特性电阻L/C。不过,的提高有一定,L太大时,损耗也大,而且C太小时并联在回路中
的杂散电容可与C相比拟,杂散电容将显著影响频率的稳定。为了减小线圈的损
耗,可用高频损耗小的线圈固架。
(2)减小负载的影响。减小振荡回路和负载间的耦合程度可减弱负载的影响,不过这时传送到负载上的振荡信号也小了,故振荡要求更强。在振荡器和负载之间加一级射极输出器可改善负载对振荡器的影响,因射极输出器之输入阻抗较高,隔离作用较好,同时不增加振荡功率的要求。 3.3 混频器
混频器是一个变频电路,一般用相乘器,高频放大电路和本地振荡电路的输出信号加到混频器的输入端,得到一个差频。调谐回路的输出,进入混频级的是高频调制信号,即载波与其携带的调制信号。经过混频,输出载波的波形变得很稀疏其频率降低了,但音频信号的形状没有变。通常将这个过程 ( 混濒和本振的作用 ) 叫做变频。从频谱观点上来看,混频的作用就是将已调波的频谱不失真的从fc的位置上,因此,混频电路是一种典型的频谱搬移电路,可用相乘器和带通滤波器来实现这种搬移。如图3.3.1所示
8
图3.3.1 频谱电路
混频电路的原理是:把本机振荡产生的高频等幅振荡信号f,与输入回路选择
1
出来的广播电台的高频已调波信号f同时加到非线性元件的输入端。利用元件
2
的非线性作用(晶体管的非线性作用)进行混频。混频结果:输出频率为f、
1
f以及频率为f+f、f-f、„„高次谐波等多种信号。 21212
在本次设计中我们采用二极管环型混频器,二极管环型混频器的优点是工作频带宽,可达到几千兆赫,噪声系数低,混频失真小,动态范围等,但其主要缺点就是没有混频增益。由于混频器处于接收机的前端,它的噪声电平高低对整机有较大的影响,因此要求混频器的噪声系数越小越好。由于混频依靠非线性特性来完成,因此在混频过程中会产生各种非线性干扰,如组合频率,交叉调制,互相调制等干扰。这些干扰将会严重的影响通信质量,因此要求混频电路对此应能有效的抑制。
图3.3.2 二极管环型混频电路
图3.3.2是二极管混频电路的原理图,图中Us、RS1为输入信号源,UL、RS2
为本振信号源,RL为中频信号的负载。为了保证二极管工作在开关状态,本振信号UL的功率必须足够大,而输入信号US功率必须远小于本振功率。实际二极管环型混频器组件各端口都必须接入滤波匹配网络,分别实现混频器与输入信号源
9
本振信号源、输出负载之间的阻抗匹配。 3.4 中频放大电路
超外差接收机中的中频放大器是一种频带较宽的谐振放大器。中放采用谐振回路作负载,这是与高放共同之处;但中放的谐振曲线接近理想曲线—矩形,这是与高放不同之处。后者对超外差接收机的中放来说是完全必要的,因中放任务之一是削弱邻近干扰,而邻近干扰频率离信号很近,变频之后,离中频就很近,若中放的谐振曲线不好,便难以削弱。此外,中放还具有工作频率固定与级数多两个特点。
中放的作用有两个主要作用:(1)提高增益,因中频低于信号频率,晶体管的y参数及回路谐振电阻等较大,因此易于获得较高的增益。差外差接收机检波前的总增益主要取决于中放。(2)抑制邻近干扰。
对中放的主要要求是工作稳定,失真小,增益高,选择性好,有足够宽的通频带。对于高放,因工作频率f0高,通频带Bf0/QL宽,故高放回路的Q值越高越好,这时不必顾虑B太窄的问题;但对于中放,由于工作频率较低,若回路Q值过高,频带可能太窄而不能通过全部信号分量,故希望他在要求的通频带条件下选择性越高越好,也就是要求谐振曲线接近矩形。实际谐振曲线很难做到理想矩形,为了衡量实际谐振曲线接近矩形的程度,引入矩形系数kr2f0.1,
2f0.707式中2f0.707为通频带。
本次设计的中频放大电路如图所示:
图3.4.1 中频放大电路
信号从变频器输出,通过变压器B10加到第一级中放BG4. BG4为双回路放大器,B11的初级和C38构成初级回路。B11的次级和B12的初级构成次级回路的电感,而电容是C40。两者组成电感耦合对称双回路。BG4集电极以自耦变压器方式接到初级回路,BG5的输入电阻通过变压器B12变换为大一些的输入电阻后和B12的初级并联。因B11的次级线圈数N45只有一圈,而可忽略。R22及C34是自动增益控制滤波器。BG4既通过R15加有固定偏压,有通过R22加有自动增益控制电压,此外,
10
射极还有偏压。第二级中放BG4.单回路中放,与检波器以变压器B13耦合。其余元件作用和BG4的相同。R16用的较大,使接收小信号的自动增益控制作用启动的晚一些,以提高小信号的灵敏度。BG5的工作电流较大,约1.6-2mA,以获得较大的增益和动态范围。
确定电路参数:
(1)管子主要根据工作频率选定,晶体管的特征频率fT应大于中频的5-10倍(至少3倍)。电路型式主要根据矩形系数、通频带决定。单回路放大器矩形系数差,频带窄;在矩形系数要求不高,通频带小于3MHZ时才使用单回路放大器。参差调谐放大器矩形系数好,通频带最宽,但调整较烦;双回路放大器矩形系数较好,通频带较宽。
(2)求QL:由B求出每级通频带B,再由B求出每个回路的等效Q值。 (3)决定回路电容和电感:由f0ff1可得00,当C不大
C2C2LC时,偏导数
f0fff可用0代替,即00 CCC2C1Cf0
2C于是f的绝对值为f 通常要求满足
Cff0.50 BCBf0.250.35 B由以上式子可得0.5Cf00.10.35 CB回路的总电容为外接电容Cy与分布电容C0之和CCyC0。Cy是比较稳定的,而C0可能变化,计算中通常取C的变化为C0的10%,即C0.1C0 所以 C回路电容为Lff0.05C00(0.140.5)C00
0.10.35BB1 z2C3.5限幅电路
发射机发出的调频信号,其幅度应该不变,但实际上存在寄生调幅,特别是信号在传输途中会受到干扰的调幅;这种不需要的幅度变化可被鉴频器检出而干扰有用信号。因此必须在鉴频之前用限幅器去掉寄生调幅,使输出调频信号的幅度不变,这样即可提扰性。要完成限幅任务,必须使用非线性器件,信号通
11
过非线性元件后,必然产生新的频率。电路图如下:
图3.5.1 限幅电路
图中BG为放大管,LC回路为其负载,回路上并联了两个限幅二极管,E1=E2为二极管提供反向偏压。若回路AB两端的高频电压小于E1,则D1及D2均不导电。若高频电压大于E1,则正半周时D2导电,负半周时D1导电。当D1及D2导电时,其内阻甚小,故D1及D2上的电压甚小;而且隔直流电容C1对高频的容抗很小,故输出电压u0近似等于E1,高频电压的最大值被在E1电平上。
参数确定:二极管的电流为
iu0E1UmcostE1 rdrd其中rd为二极管的正向内阻。 导电角应满足UmcostE1,带入得i1Um(costcos) rdIm1于是每个二极管的基波电流幅度为
20icostd(t)Um(sincos)rd
每个二极管对交流呈现的电阻为
Umrd Im1sincos两个二极管并联后对高频的电阻为Rrd
2(sincos)3.6 鉴频电路
鉴频器的任务是从调频信号中检出调制信号,它包括变换部分及振幅检波器部分。普通鉴频器的线性范围较宽,调整较易;但由UIcmR0Lcos(Xr)可以看到,U=正比于前级集电极电流的基波幅度Icm1,鉴频前若无限幅器,则Icm1不为
12
常数,于是U=将随Icm1即接收信号的大小改变,而不能去掉寄生调幅的影响。故用普通鉴频器时,前面必须使用限幅器。但限幅器要求较大的输入信号,这导致限幅前高频级数的增加哦。比例鉴频器可改正这一缺点,它能同时完成限幅及鉴频的任务,其输入信号不必太大。比例鉴频器的U=为普通鉴频器的一半。但因比例鉴频器有限幅作用,其输入信号即鉴频器输入端初级回路电压约只有0.1V即可工作。所以在本次设计中采用了比例鉴频器,其单元电路图如下所示:
图3.6.1 鉴频电路
图中C1是高频滤波电容,R及C是减重网路,它用来提高抗干扰性。其作用原理是:在发射机中用加重网络加重高音,接收时用减重网络削弱高音,于是不存在高音频率失真。这样一来,减重网路把高音端的干扰削弱了,故接收机的信噪比得以提高;或者说,减重网络压缩了通频带,减小了噪声。图3.6.1中电容C上的输出电压在高音时因C的电抗减小而下降。
确定电路参数:
(1) 选择振幅检波二极管。
(2) 选定回路电容C1C2C。 (3) 求回路电感 L1L2L1 20CQL1(0.50.6)Q01(4) 选定Q01及Q02,求QL1及QL2
QQL20234
验算Xrmax:在比例鉴频中,0.51,故Xrmax'2QLfm0.51
f011 (5)求负载电阻R1,R2 R1R2R()Q020L2
23
13
=4-8k
(5) 求M12,M13,因为K可按下式求出:k故 M12kL1L2kL M13=L1L2 (6)求U=Uy21UbmR0L1cos4(1Xr1Xr2)(Xr1Xr2)22'QL0.51
QL1QL2222
22(2p2X [4p323r)p422pX2r33( )]3.7 低频放大电路
从鉴频器输出的信号一般很小,所以在输出极一般采用低频功率放大电路,如果是音频信号,可以外加一个喇叭。单元电路如图所示:
图5.7.1 低频放大电路
结 论
在短短的两周时间里,我学会了设计高频电子线路的一些基本知识,虽然
14
时间短暂,但我还是充分利用,从中学会了不少知识。在本学期中,各种形式的实践课占了很大一部分课时。在实践课中,我们学到了很多我们所学课程的教科书上没有的东西。同时,实践课对我们理论课的学习也很有帮助。做设计之前在网上,图书馆找了好几天的资料,也自学了PROTEL 99 SE软件。单元电路的每一部分都经过比较认真的考虑,比较了很多类似的电路,也参考了很多书,做完之后觉得这样的方案组合还是可行的。因为这样那样的原因,没有能做出成品,但应该知道做成品就更困难,遇到的困难也就会更多。但从开始认为随便就可以找到现成的方案到经过两个多星期自己的实践,得到了自己的设计,已经迈出了动手的第一步。在以往的学习中,我总感觉对课本知识不理解,不会融会贯通,在这次设计中,我真正把理论与实践联系起来,使我所学的高频电子知识得到了的运用,我觉得我的能力有了更进一步的提高。在这次课程设计过程中,我遇到了几个自己不能解决的问题,通过老师和同学的帮助最终把问题解决,在此,我才知道自己的电子知识还是不够,而且我们所学的理论知识是很有用的,没有坚实的知识基础,是不可能完成设计的。
超外差式收音机的中频放大电路采用了固定调谐的电路,这 - 特点使它比其他收音机优越得多,综合起来有如下优点: (1) 用作放大的中频,可以选择那些易于控制的、有利于工作的领率 ( 我国采用的中频频率为 465 千赫 ) ,以便适合于管子和电路的性质,能够得到较为稳定和最大限度的放大量。
(2) 各个波段的输入信号都变成了固定的中频,电路将不因外来频率的差异而影响工作,这样各个频带就能够得到均匀的放大,这对于频率相差很大的高频信号 ( 短波 ) 来说,是特别有利的。
(3) 如果外来信号和本机振荡相差不是预定的中频,就不可能进入放大电路。因此在接收一个需要的信号时,混进来的干扰电波首先就在变频电路被剔除掉,加之中频放大电路是一个调谐好了的带有滤波性质的电路,所以收音机的选择性指标很高。
实践的过程中出现了无法解决的问题,所以我们也查阅了大量相关资料和书籍,这也是获取知识最重要的途径之一,吸取前人的经验也是解决问题的很好途径,但是绝不能照抄别人的成品,先继承后发展才能算是我的收获的。
“书到用时方恨少!”应用时的捉襟见肘才让我认识到了自己的不足,每一门专业基础课都是我们手中不可替代的武器,只有把他们有机联系起来才有可能实现一个完整的功能,本次课程设计是我体会到只有付出才会有收获,只有平日认真学习关键时刻才会不捉襟见肘,只有团结一致才会成功,只有互助才会顺利。
课程设计要亲手做过,不管它是否有结果。你要学的是知识,是解决问题的方法和思想,要端正学习态度,一时的成败不足以论英雄,每一次突破都是一种收获,就是在这样的过程中我们才能不断提高。在从开始接到课程设计,再到报告的完成,每走一步都渗透着努力和汗水。在收获知识的同时收获快乐。
参考文献:
张肃文 高频电子线路(第五版) 高等教育出版社 曾兴雯 陈健 高频电子线路辅导 西安电子科技大学出版社 戴峻浩 高频电子线路指导 国防工业出版社
15
16
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- banwoyixia.com 版权所有 湘ICP备2023022004号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务