您的当前位置:首页正文

平方差公式

来源:帮我找美食网

  用“平方差公式”分解因式

  一、学习目标:1.使学生了解运用公式法分解因式的意义;

  2.使学生掌握用平方差公式分解因式

  二、重点难点

  重 点: 掌握运用平方差公式分解因式.

  难 点: 将单项式化为平方形式,再用平方差公式分解因式;

  学习方法:归纳、概括、总结

  三、合作学习

  创设问题情境,引入新课

  在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.

  如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.

  1.请看乘法公式

  (a+b)(a-b)=a2-b2 (1)

  左边是整式乘法,右边是一个多项式,把这个等式反过来就是

  a2-b2=(a+b)(a-b) (2)

  左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

  利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.

  a2-b2=(a+b)(a-b)

  2.公式讲解

  如x2-16

  =(x)2-42

  =(x+4)(x-4).

  9 m 2-4n2

  =(3 m )2-(2n)2

  =(3 m +2n)(3 m -2n)

  四、精讲精练

  例1、把下列各式分解因式:

  (1)25-16x2; (2)9a2- b2.

  例2、把下列各式分解因式:

  (1)9(m+n)2-(m-n)2; (2)2x3-8x.

  补充例题:判断下列分解因式是否正确.

  (1)(a+b)2-c2=a2+2ab+b2-c2.

  (2)a4-1=(a2)2-1=(a2+1)•(a2-1).

  五、课堂练习 教科书练习

  六、作业 1、教科书习题

  2、分解因式:x4-16 x3-4x 4x2-(y-z)2

  3、若x2-y2=30,x-y=-5求x+y

因篇幅问题不能全部显示,请点此查看更多更全内容

Top