您的当前位置:首页正文

1.2.3相反数

来源:帮我找美食网

  学习目标:1、掌握相反数的概念,与绝对值的关系;互为相反数的几何意义。2、发展学生的符号感,培养学生的数形结合意识。

  学习重点、难点:1、互为相反数的几何意义;2、渗透的数学方法与数学思想:数形结合、普遍联系的思想。

  学习过程

  一、课前预习

  复习提问:什么是一个数的绝对值,怎么求?

  (1)-3的绝对值为                =               

  =                  =             

  (2)           的绝对值为5,          的绝对值为0

  若 =3  则a=         , 若 =-10  则a=       

  (3)总结:一个数的绝对值可用若 表示, ≥0

  一个数的绝对值表示这个数在数轴上表示的点到原点的距离。

  二、课堂学习

  +5、-5之间有什么关系?

  我们把这样的两个数叫互为相反数

  ▲符号不同,绝对值相同的两个数叫互为相反数,其中一个数是另一个数的相反数。

  例1:求3、-4.5、的相反数

  小结:求一个数的相反数只要在这个数前面加上“-”

  例:-4.5的相反数为-(-4.5)=+4.5

  练:说出-(+3)   -(-0.5)的含义

  例2:化简:

  问题:我们了解相反数的意义,及相反数的求法,你对相反数有何自己的看法或解释?

  几何解释:从数轴上看,互为相反数在原点的两侧,到原点的距离相等。

  练习:23页练一练

  课堂练习:

  (1)化简:                                      

  (2)一个数在数轴上对应的点向右移动5个单位长度后,得到它的相反数的对应点,则这个数

  是                  

  (3)a的相反数为         ,    一定是负数吗?举例说明.

  (4)在数轴上标出 , 的点,并用“<”或“>”填充:

  (1)       0  ,       0 ,      ,

  (2)      ,         ,   

  (3)      ,      

  三、课堂检测

  (一)、选择题:

  1、的相反数是                                (    )

  a       b    2    c  -2     d   

  2、下列各对数中互为相反数的是                       (    )

  a  -2与  b  与2    c  -2.5 与   d  与

  3、有理数中负数的个数是  (    )

  a  1个   b  2个   c   3个   d    4个

  4、一个数的相反数小于原数,这个数是                 (    )

  a 正数   b   负数    c   0     d   整数

  (二)、填充:

  1、一个数的相反数是它本身,这个数是                。

  2、如果的相反数为 -7则=            

  3、化简:(1)=            (2)           

  (3) =             (4)=            

  4、若a、b表示互为相反数,a在b的右侧,并且这两点间的距离为2.4,则这两点所表示的数分别为             

  (三)、解答题:

  1、写出下列各数的相反数:0, 58,-4, 3.14,

  2、-(-7)是_____________的相反数,-(+4)是_____________的相反数.

  四、作业布置

  1、到原点的距离是5个单位长度的数是         ,它们的关系是              。

  2、化简:         ,            ,          

  3、比较大小:       -(-4.4)            

  4、若>0 则=                若<0    则=        

  5、若的相反数是6.5  则=              

  6、把下列各数填入相应的集合里

  整数集合:{                   … } 正数集合:{                  … }

  负分数集合:{                     …}

  7、在数轴上分别用点a、b、c表示。并用点d、e、f表示它们的相反数,并把它们(包括它们的相反数)用“<”连接。

  8、如果的相反数是  ,求的值。 

  ★     9、已知:a>0,b<0 ,且<。请结合数轴用“<”连接  

因篇幅问题不能全部显示,请点此查看更多更全内容

Top