您的当前位置:首页正文

PLC安装

来源:帮我找美食网
1.PLC的安

(1).设立一个独立的开关,并加装熔断器作短路保护。对PLC供电系统采用隔离变压器。 (2).要对PLC及其相关设备进行接地处理。将PLC及其相关设备所有接地点连在一起并与系统接地点相接,将系统中所有直流电源的公共点连接到同一个单一接点上,为减小接地电阻,所有接地线应尽量短并用2平方毫米以上的接地线。

(3).将动力线、控制线以及PLC的电源线和输入/输出线分别配线,隔离变压器与PLC和输入/输出线之间采用带屏蔽的双绞线电缆连接,并将电缆屏蔽层可靠接地。将PLC的输入/输出线和大功率线分开走线,且输入/输出线不用同一根电缆并分开走线,交流输出线和直泫输出线同样不用同一根电缆,并尽可能远离动力线和高压线。 2.变频器的安装

(1).变频器是由很多元器件通过焊接、螺丝连接等方式组装而成。当变频器的控制柜受到机械振动或冲击时,会导致焊点、螺丝等连接器件或连接头松动或脱落,引起电气接触不良甚至造成短路等故障。因此,在变频器控制柜外加装抗震橡皮垫片,在控制柜内的器件和安装板之间加装缓冲橡胶垫,减震。

(2).动力电缆选用屏蔽的三芯电缆。并与信号线分开走线。信号线选用屏蔽双绞线,并放置在金属软管内。为保证信号线与动力线的彻底分开,故金属软管一直延伸到变频器的控制端子处。在接线时电缆剥线要尽可能的短,同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。为了提高接线的可靠性,信号线上应使用压线棒端子。

1引言

可编程控制器(PLC)是一种新型的通用自动化控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制功能强,可*性高,使用灵活方便,易于扩展等优点而应用越来越广泛。但在使用时由于工业生产现场的工作环境恶劣,干扰源众多,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰,电焊机、电火花加工机床、电

机的电刷等通过电磁耦合产生的工频干扰等,都会影响PLC的正常工作。

尽管PLC是专门在现场使用的控制装置,在设计制造时已采取了很多措施,使它对工业环境比较适应,但是为了确保整个系统稳定可*,还是应当尽量使PLC有良好的工作环境条件, 并采取必要的抗干扰措施。

2 PLC在安装和维护时应注意的问题

2.1 PLC的安装

PLC适用于大多数工业现场,但它对使用场合、环境温度等还是有一定要求。控制PLC的

工作环境,可以有效地提高它的工作效率和寿命。在安装PLC时,要避开下列场所: (1)环境温度超过0 ~ 50℃的范围;

(2)相对湿度超过85%或者存在露水凝聚(由温度突变或其他因素所引起的); (3)太阳光直接照射;

(4)有腐蚀和易燃的气体,例如氯化氢、硫化氢等;

(5)有打量铁屑及灰尘;

(6)频繁或连续的振动,振动频率为10 ~ 55Hz、幅度为0.5mm(峰-峰);

(7)超过10g(重力加速度)的冲击。

小型可编程控制器外壳的4个角上,均有安装孔。有两种安装方法,一是用螺钉固定,不同的单元有不同的安装尺寸;另一种是DIN(德国共和标准)轨道固定。DIN轨道配套使用的安装夹板,左右各一对。在轨道上,先装好左右夹板,装上PLC,然后拧紧螺钉。为了使控制系统工作可*,通常把可编程控制器安装在有保护外壳的控制柜中,以防止灰尘、油污、水溅。为了保证可编程控制器在工作状态下其温度保持在规定环境温度范围内,安装机器应有足够的通风空间,基本单元和扩展单元之间要有30mm以上间隔。如果周围环境超过55C,要安装电风扇,强迫通风。

为了避免其他外围设备的电干扰,可编程控制器应尽可能远离高压电源线和高压设备,可编程控制器与高压设备和电源线之间应留出至少200mm的距离。

当可编程控制器垂直安装时,要严防导线头、铁屑等从通风窗掉入可编程控制器内部,造成印刷电路板短路,使其不能正常工作甚至永久损坏。 2.2 电源接线

PLC供电电源为50Hz、220V±10%的交流电。

FX系列可编程控制器有直流24V输出接线端。该接线端可为输入传感(如光电开关或接近开关)提供直流24V电源。

如果电源发生故障,中断时间少于10ms,PLC工作不受影响。若电源中断超过10ms或电源下降超过允许值,则PLC停止工作,所有的输出点均同时断开。当电源恢复时,若RUN输入接通,则操作自动进行。

对于电源线来的干扰,PLC本身具有足够的抵制能力。如果电源干扰特别严重,可以安装一个变比为1:1的隔离变压器,以减少设备与地之间的干扰。 2.3 接地

良好的接地是保证PLC可*工作的重要条件,可以避免偶然发生的电压冲击危害。接地线与机器的接地端相接,基本单元接地。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。为了抑制加在电源及输入端、输出端的干扰,应给可编程控制器接上专用地线,接地点应与动力设备(如电机)的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能*近PLC。

2.4 直流24V接线端

使用无源触点的输入器件时,PLC内部24V电源通过输入器件向输入端提供每点7mA的电流。

PLC上的24V接线端子,还可以向外部传感器(如接近开关或光电开关)提供电流。24V端子作传感器电源时,COM端子是直流24V地端。如果采用扩展船员,则应将基本单元和扩展单元的24V端连接起来。另外,任何外部电源不能接到这个端子。 如果发生过载现象,电压将自动跌落,该点输入对可编程控制器不起作用。

每种型号的PLC的输入点数量是有规定的。对每一个尚未使用的输入点,它不耗电,因此在这种情况下,24V电源端子向外供电流的能力可以增加。 FX系列PLC的空位端子,在任何情况下都不能使用。

2.5 输入接线

PLC一般接受行程开关、限位开关等输入的开关量信号。输入接线端子是PLC与外部传感器负载转换信号的端口。输入接线,一般指外部传感器与输入端口的接线。

输入器件可以是任何无源的触点或集电极开路的NPN管。输入器件接通时,输入端接通,输入线路闭合,同时输入指示的发光二极管亮。

输入端的一次电路与二次电路之间,采用光电耦合隔离。二次电路带RC滤波器,以防止由于输入触点抖动或从输入线路串入的电噪声引起PLC误动作。

若在输入触点电路串联二极管,在串联二极管上的电压应小于4V。若使用带发光二极管的舌簧开关,串联二极管的数目不能超过两只。 另外,输入接线还应特别注意以下几点:

(1)输入接线一般不要超过30m。但如果环境干扰较小,电压降不大时,输入接线可适当长些。

(2)输入、输出线不能用同一根电缆,输入、输出线要分开。

(3)可编程控制器所能接受的脉冲信号的宽度,应大于扫描周期的时间。 2.6 输出接线

(1)可编程控制器有继电器输出、晶闸管输出、晶体管输出3种形式。

(2)输出端接线分为独立输出和公共输出。当PLC的输出继电器或晶闸管动作时,同一号码的两个输出端接通。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。

(3)由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板,因此,应用熔丝保护输出元件。

(4)采用继电器输出时,承受的电感性负载大小影响到继电器的工作寿命,因此继电器工作寿命要求长。

(5)PLC的输出负载可能产生噪声干扰,因此要采取措施加以控制。

此外,对于能使用户造成伤害的危险负载,除了在控制程序中加以考虑之外,还应设计外部紧急停车电路,使得可编程控制器发生故障时,能将引起伤害的负载电源切断。 交流输出线和直流输出线不要用同一本电缆,输出线应尽量远离高压线和动力线,避免并行。 3 结语

PLC以其显著的优点而广泛用于工业控制,其实际应用涉及的问题很多,本文只是就其现场安装和维护问题提出了一些注意事项,供从事PLC设计及应用人员参考。

pid控制

编辑词条

摘要

PID控制 当今的自动控制技术都是基于反馈的概念。反馈理论的要素包括三个部分:测量、比较和执行。测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。 这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。

PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是

应用最广泛的工业控制器。PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。其输入e (t)与输出u (t)的关系为

u(t)=kp(e((t)+1/TI∫e(t)dt+TD*de(t)/dt) 式中积分的上下限分别是0和t 因此它的传递函数为:G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s) 其中kp为比例系数; TI为积分时间常数; TD为微分时间常数

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp, Ti和Td)即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

其次,PID参数较易整定。也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

第三,PID控制器在实践中也不断的得到改进,下面两个改进的例子。

在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。PID参数自整定就是为了处理PID参数整定这个问题而产生的。现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准。 在一些情况下针对特定的系统设计的PID控制器控制得很好,但它们仍存在一些问题需要解决:

如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。闭环工作时,要求在过程中插入一个测试信号。这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。

如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。 因此,许多自身整定参数的PID控制器经常工作在自动整定模式而不是连续的自身整定模式。自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。 PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。最重要的是,如果PID控制器不能控制复杂过程,无论怎么调参数都没用。

虽然有这些缺点,PID控制器是最简单的有时却是最好的控制器

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器 (intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、开环控制系统

开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统

闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 3、阶跃响应

阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、

准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。 4、PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在

调节过程中的动态特性。 5、PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。 对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3 对于流量系统:P(%)40--100,I(分)0.1--1 对于压力系统:P(%)30--70,I(分)0.4--3 对于液位系统:P(%)20--80,I(分)1--5 参数整定找最佳,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大 曲线漂浮绕大湾,比例度盘往小扳 曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低 PID控制实现 1 . PID 的反馈逻辑

各种变频器的反馈逻辑称谓各不相同,甚至有类似的称谓而含义相反的情形。系统设计

时应以所选用变频器的说明书介绍为准。所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出频率和电机转速.减少冷水的流量。由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。这就是引入反馈逻辑的原由。几种变频器反馈逻辑的功能选择见表 1 。 2 .打开 PID 功能

要实现闭环的 PID 控制功能,首先应将 PID 功能预置为有效。具体方法有两种:一是通过变频器的功能参数码预置,例如,康沃 CVF-G2 系列变频器,将参数 H-48 设为 O 时,则无 PID 功能;设为 1 时为普通 PID 控制;设为 2 时为恒压供水 PID 。二是由变频器的外接多功能端子的状态决定。例如安川 CIMR-G 7A 系列变频器,如图 1 所示,在多功能输入端子 Sl-S10 中任选一个,将功能码 H1-01 ~ H1-10( 与端子 S1-S10 相对应 ) 预置为 19 ,则该端子即具有决定 PI[) 控制是否有效的功能,该端子与公共端子 SC “ ON ”时无效,“ OFF ”时有效。应注意的是.大部分变频器兼有上述两种预置方式,但有少数品牌的变频器只有其中的一种方式。

在一些控制要求不十分严格的系统中,有时仅使用 PI 控制功能、不启动 D 功能就能满足需要,这样的系统调试过程比较简单。 3 .目标信号与反馈信号

欲使变频系统中的某一个物理量稳定在预期的目标值上,变频器的 PID 功能电路将反馈信号与目标信号不断地进行比较,并根据比较结果来实时地调整输出频率和电动机的转速。所以,变频器的 PID 控制至少需要两种控制信号:目标信号和反馈信号。这里所说的目标信号是某物理量预期稳定值所对应的电信号,亦称目标值或给定值;而该物理量通过传感器测量到的实际值对应的电信号称为反馈信号,亦称反馈量或当前值。 PID 控制的功能示意图见图 2 。图中有一个 PID 开关。可通过变频器的功能参数设置使 PID 功能有效或无效。 PID 功能有效时,由 PID 电路决定运行频率; PID 功能无效时,由频率设定信号决定运行频率。 PID 开关、动作选择开关和反馈信号切换开关均由功能参数的设置决定其工作状态。

4 .目标值给定

如何将目标值 ( 目标信号 ) 的命令信息传送给变频器,各种变频器选择了不同的方法,而归结起来大体上有如下两种方案:一是自动转换法,即变频器预置 PID 功能有效时,其开环运行时的频率给定功能自动转为目标值给定.如表 2 中的安川 CIMR-G 7A 与富士

P11S 变频器。二是通道选择法,如表 2 中的康沃 CVF-G2 、森兰 SB12 和普传 P17000 系列变频器。

以上介绍了目标信号的输入通道,接着要确定目标值的大小。由于目标信号和反馈信号通常不是同一种物理量。难以进行直接比较,所以,大多数变频器的目标信号都用传感器量程的百分数来表示。例如,某储气罐的空气压力要求稳定在 1 . 2MPa ,压力传感器的量程为 2MPa ,则与 1 . 2MPa 对应的百分数为 60 %,目标值就是 60 %。而有的变频器的参数列表中,有与传感器量程上下限值对应的参数,例如富士 P11S 变频器,将参数 E40( 显示系数 A) 设为 2 ,即压力传感器的量程上限 2MPa :参数 E41( 显示系数 B) 设为 0 ,即量程下限为 0 ,则目标值为 1 . 2 。即压力稳定值为 1 . 2 MPa 。目标值即是预期稳定值的绝对值。 5 .反馈信号的连接

各种变频器都有若干个频率给定输入端,在这些输入端子中,如果已经确定一个为目标信号的输入通道,则其他输入端子均可作为反馈信号的输入端。可通过相应的功能参数码选择其中的一个使用。比较典型的几种变频器反馈信号通道选择见表 3 。 6 . P 、 I 、 D 参数的预置与调整 (1) 比例增益 P

变频器的 PID 功能是利用目标信号和反馈信号的差值来调节输出频率的,一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。解决这一矛盾的方法就是事先将差值信号进行放大。比例增益 P 就是用来设置差值信号的放大系数的。任何一种变频器的参数 P 都给出一个可设置的数值范围,一般在初次调试时, P 可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。 (2) 积分时间

如上所述.比例增益 P 越大,调节灵敏度越高,但由于传动系统和控制电路都有惯性,调节结果达到最佳值时不能立即停止,导致“超调”,然后反过来调整,再次超调,形成振荡。为此引入积分环节 I ,其效果是,使经过比例增益 P 放大后的差值信号在积分时间内逐渐增大 ( 或减小 ) ,从而减缓其变化速度,防止振荡。但积分时间 I 太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。因此, I 的取值与拖动系统的时间常数有关:拖动系统的时间常数较小时,积分时间应短些;拖动系统的时间常数较大时,积分时间应长些。 (3) 微分时间 D

微分时间 D 是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。 D 的取值也与拖动系统的时间常数

有关:拖动系统的时间常数较小时,微分时间应短些;反之,拖动系统的时间常数较大时, 微分时间应长些。

(4)P 、 I 、 D 参数的调整原则

P 、 I 、 D 参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:被控物理量在目标值附近振荡,首先加大积分时间 I ,如仍有振荡,可适当减小比例增益 P 。被控物理量在发生变化后难以恢复,首先加大比例增益 P ,如果恢复仍较缓慢,可适当减小积分时间 I ,还可加大微分时间 D

四、PLC应用中需要注意的问题

PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。因此在使用中应注意以下问题: 1.工作环境 (1)温度

PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。 (2)湿度

为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。 (3)震动

应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。

(4)空气

避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。

(5)电源

PLC对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。 2.控制系统中干扰及其来源

现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此必须知道现场干扰的源头。(1)干扰源及一般分类

影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串

入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。 (2)PLC系统中干扰的主要来源及途径 强电干扰

PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。 柜内干扰

控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。 来自信号线引入的干扰

与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。 来自接地系统混乱时的干扰

接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top