您的当前位置:首页正文

天津大学《工程光学》课程教学大纲

来源:帮我找美食网
天津大学《工程光学》课程教学大纲

课程代码: 学 时: 学时分配: 授课学院: 适用专业: 先修课程:

2020015/2020016 64 精仪学院

课程名称: 工程光学 学 分: 4 更新时间: 2011-6-14

授课:52 实验:12(内容及要求见实验教学大纲) 测控技术与仪器、电子科学与技术、信息工程(光电信息工程方向)、光电子技术科学、生物医学工程 高等数学、大学物理

一.课程性质、教学目的与任务

本课程是一门专业基础课,主要讲授几何光学和物理光学方面的基本理论、基本方法和典型光学系统实例及应用。通过本课程的学习,学生应能对光学的基本概念、基本原理和典型系统有较为深刻的认识,为学习光学设计、光信息理论和从事光学研究打下坚实的基础。

二.教学基本要求

任课教师应以本课程大纲为依据,合理安排教学内容,认真备课;课堂教学中应尽可能充分利用多媒体课件、课程网站等现有教学资源,根据实际条件开展不同程度的双语教学实践;课堂教学后,要留一定数量的作业题,并坚持批改,以利掌握学生的学习情况;习题讲解和分析均不占课内学时;要及时与实验指导人员取得联系,安排相应课程实验,课程主讲教师必须全程参加实验指导1个班次。

学生应按要求参加全部的课堂教学活动,按要求完成作业;参加期中、期末考试,获得该课程学分。

通过本课程的学习,学生应掌握或了解以下基本内容:

1.系统掌握几何光学的基础理论,包括基本定律、球面和共轴球面系统理

论、理想光学系统理论,平面镜与棱镜系统理论和光学系统中光阑的概念。

2.掌握光学系统像差的基本概念、产生原因、危害和校正方法,了解像差

的计算。

3.掌握三种典型的光学系统,即:显微系统、望远系统和摄影系统,并了

解一些特殊的光学系统知识。

4.掌握光的电磁理论及光波叠加的相关知识。

1

5.掌握光的干涉、衍射、偏振的理论、计算和典型应用。

三.教学内容

绪 论

1. 学习《工程光学》的意义和重要性(光学对国民经济发展的重要作用、光学

领域的分支、进展和应用) 2. 本课程的性质、任务和内容

3. 学习的基本要求、教学环节和学习方法

第一章 几何光学基本定律与成像概念

1.几何光学基本定律:1)光的直线传播定律 2)光的独立传播定律 3)反射定律和折射定律(全反射及其应用) 4)光路的可逆性 5)费马原理(最短光程原理) 6)马吕斯定律: 2.完善成像条件的概念和相关表述

3.应用光学中的符号规则,单个折射球面的光线光路计算公式(近轴、远轴) 4.单个折射面的成像公式,包括垂轴放大率、轴向放大率、角放大率γ、拉赫不变量等公式。 5.球面反射镜成像公式

6.共轴球面系统公式(包括过渡公式、成像放大率公式)

第二章 理想光学系统

1.共轴理想光学系统的成像性质

2.无限远的轴上(外)物点的共轭像点及光线、无限远的轴上(外)像点的对应物点及光线的性质,物(像)方焦距的计算公式 3.物方主平面与像方主平面的性质,光学系统的节点及性质 4.图解法求像的方法

5.解析法求像方法(牛顿公式、高斯公式) 6.由多个光组组成的理想光学系统的成像公式

7.理想光学系统的放大率概念及公式,理想光学系统两焦距之间的关系,理想光学系统的组合公式和正切计算法

第三章 平面与平面系统

1.平面光学元件的种类和作用

2.平面镜的成像特点和性质,平面镜的旋转特性,光学杠杆原理和应用 3.平行平板的成像特性,近轴区内的轴向位移公式

4.反射棱镜的种类、基本用途、成像方向判别、等效作用与展开。 5.折射棱镜的作用,其最小偏向角公式及应用,光楔的偏向角公式及其应用

2

6.棱镜色散、色散曲线、白光光谱的概念 7.常用的光学材料种类和特点

第四章 光学系统中的光束限制

1.孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系 2.视场光阑、入窗、出窗、视场角的定义及它们的关系

3.渐晕、渐晕光阑、渐晕系数的定义及渐晕光阑和视场光阑的关系 4.照相系统的基本结构、成像关系和光束限制 5.望远系统的基本结构、成像关系和光束限制

6.显微系统的基本结构、成像关系和光束限制,物方远心光路原理 7.光瞳衔接原则及其作用 8.场镜的定义、作用和成像关系

9.景深、远景景深、近景景深的概念,景深公式和影响因素

第五章 光线的光路计算及像差理论

1.像差的定义、种类和消像差的基本原则

2.7种几何像差的定义、影响因素、性质和消像差方法

第六章 典型光学系统

1. 正常眼、近视眼和远视眼的定义和特征,校正非正常眼的方法,眼睛调节能

力的计算

2. 放大镜的视觉放大率和视场

3. 显微镜系统的概念和计算公式,包括:1)组成、成像关系、光束限制 2)视

觉放大率公式 3)线视场公式 4)数值孔径和出瞳D’ 5)物镜的分辨率 6)显微镜的有效放大率 7)物镜的景深 8)视度调节: 4. 临界照明和坷拉照明

5. 望远系统的概念和计算公式,包括: 1)组成、成像关系、光束限制 2)视

觉放大率公式 3)分辨率与视觉放大率的关系 4)有效分辨率和工作分辨率 6. 摄影系统的概念和计算公式,包括: 1)组成、成像关系、光束限制 2)摄

影物镜的3个主要参数及其影响作用 3)分辨率公式 4)光圈的定义及其与孔径光阑、分辨率、像面照度、景深的关系 5)景深公式及其影响因素 6)摄影物镜的种类

7. 投影系统的概念和计算公式,包括:1)系统的基本要求 2)主要光学参数 3)

其照明系统的衔接条件

第七章 光学系统的像质评价

1.光学系统像质评价方法和各自的优缺点

2.用MTF曲线和其下面积判断光学系统的成像质量的方法和基本原理

3

3.望远物镜、显微物镜、望远目镜、显微目镜和照相物镜的像值评价要求和校像差要求

第八章 光的电磁理论基础

1.麦克斯韦方程组、物质方程、波动方程

2.电磁波的平面波解,包括:平面波、简谐波解的形式和意义,物理量的关系,电磁波的性质等

3.球面波和柱面波的定义、方程表达式 4.光在电介质分界面和金属表面的反射和折射

5.波的叠加原理及4种情况下两列波的叠加结果、性质分析 6.相速度和群速度概念

第九章 光的干涉和干涉系统

1.干涉现象和形成干涉的条件

2.杨氏双缝干涉性质、装置、公式、条纹特点及其现象的应用

3.条纹可见度的定义、影响因素及其相关概念(包括临界宽度和允许宽度、空间相干性和时间相干性、相干长度和相干时间等)

4.平行平板的双光束干涉定域面、干涉装置、干涉条纹的性质和计算公式 5.楔形平板的双光束干涉定域面、干涉装置、干涉条纹的性质和计算公式 6.典型双光束干涉系统及其应用

7.平行平板的多光束干涉条件、装置、干涉条纹性质与计算 8.法布里-珀罗干涉仪和干涉滤光片

第十章 光的衍射

1.衍射现象、衍射系统和分类,惠更斯原理和夫琅和费衍射公式 2.矩孔夫琅和费衍射的光强分布公式和衍射条纹性质分析 3.单缝夫琅和费衍射的光强分布公式和衍射条纹性质分析

4.圆孔夫琅和费衍射的光强分布公式和衍射条纹性质分析,成像系统的分辨本领

5.多缝夫琅和费衍射的光强分布公式和衍射条纹性质分析 6.衍射光栅的方程、特性和种类

第十一章

生偏振光的方法

2. 菲涅尔公式、布儒斯特定律和马吕斯定律

3. 晶体光学的基本概念(光轴、主平面、主截面、单轴多轴晶体、正负晶体) 4. 各种起偏器、分束器和波片的结构、作用和工作原理

4

光的偏振和晶体光学基础

1. 自然光、偏振光和部分偏振光的定义、特点,偏振度的定义和计算,能够产

5. 偏振光的矩阵表示 6. 偏振光的变换和测定

7. 偏振光的干涉原理、装置、公式、光强分布特性

四.学时分配

教学内容 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 第十一章 总计: 授课 4 6 4 4 2 5 1 4 8 8 6 52 上机 实验 2 2 2 2 2 2 12 实践 实践(周) 五.评价与考核方式

平时10%(出勤、作业、随堂测验等)

实验20% (实验成绩评定内容见“工程光学实验大纲”) 期中考试20%, 期末考试50%

六.教材与参考资料

教材:郁道银、谈恒英主编,工程光学(第三版),机械工业出版社,2011 参考文献:

1、张以谟主编,应用光学(第三版),电子工业出版社,2008 2、梁铨廷编著,物理光学(第三版),电子工业出版社,2009 3、张凤林、孙学珠主编,工程光学,天津大学出版社,1988

4、M. 波恩、E. 沃尔夫著,光学原理(第七版),电子工业出版社,2006 5、蔡怀宇编著,工程光学复习指导与习题解答,机械工业出版社,2009 6、Eugene Hecht, Cunlin Zhang adapt. Optics, 4th edition, Higher education press, 2005

5

7、Born & Wolf, Principles of Optics, 7th edition, Cambridge University Press, 1999

8.Finchan & Freeman, Optics, 9th edition, Cambridge University Press, 1980 9. Jurgen R. Meyer, Introduction to Classical and Modern Optics, 2th, Prentice-Hall Inc.

10.工程光学网站:http://course.tju.edu.cn/gcgx/

6

TU Syllabus for Engineering Optics

Code:

Semester Hours: Semester Structure

2020015/ 2020016 64

Title:

Engineering Optics

Credits: 4

Hour Lecture:52

Experiment:12 ( Individual syllabus ) Precision Instruments &

Offered by: Date: 2011-6-14

Opto-electronics College

Measurement &Control, Information Engineering, Optoelectronics

for:

Science, Biomedical Engineering, etc

Prerequisite: Advanced Mathematics, College Physics

1. Objective

The main objective of the course is to provide students with basic concepts, theories and applied systems of geometric optics and physical (wave) optics. After successful completion of this course, students will be able to:

1) Master the basic theory in geometrical optical system, including basic laws, spherical and coaxial spherical systems theory, the ideal optical systems theory, plane mirror and prism system theory and the concept of aperture optical system.

2) Grasp the basic concepts of the optical system aberration, causes, risks and calibration methods, and the aberration calculations.

3) Master the three typical optical systems, namely: the micro-system, telescope system and camera system, and learn about some special knowledge of the optical systems.

4) Explain the electromagnetic theory and results of light superposition.

5) Master the basic optical phenomena, the principles and the applications of interference, diffraction and polarization.

2. Course Description

This course covers basic principles of geometric optics, physical (wave) optics and their application to engineering systems. It explains the basic theory in geometrical optical system,

including basic laws, spherical and coaxial spherical systems theory, the ideal optical systems theory, plane mirror and prism system theory and the concept of aperture optical system, etc. It also

introduces the wave nature of light and the consequences of this behavior, which named interference, diffraction and polarization. After learning this course, students could have a profound understanding about the basic concepts, principles and the typical systems on optics, and could obtain a solid background on the optical design, the information theory and the optics research work.

3. Topics

7

Introduction

1) Learning the meaning and importance of \"Engineering Optics\" (the important role of optics in

the development of national economy, the branches of optics, progress and application) 2) The nature of this course, tasks and content

3) The basic requirements and methods in teaching and learning

Chap. 1 The Basic Laws of Geometrical Optics and Imaging Concepts

1) Basic laws of geometrical optics: (1) the rectilinear propagation law of light (2)the

independent propagation law of light (3)the law of reflection and refraction (ATR and its application) (4)the reversibility of the optical path (5)Fermat's principle (the shortest optical path principle) (6)Malus law

2) The concept of perfect imaging conditions and the related expressions

3) The symbol rules in applied optics, the formula of the single optical path on light refraction

spherical (paraxial, abaxial )

4) The imaging equation of single refractive surface, including the vertical axis ratio , axial

magnification ratio , angle magnification ratio γ, and Lagrange’s invariants. 5) The imaging formula of spherical mirror

6) The formula of coaxial spherical system (including the transition formula and the imaging

magnification formula)

Chap. 2 Ideal Optical System

1) The imaging properties of the coaxial ideal optical system

2) The conjugate image point of the infinite far (outer) object point, the object point and the

nature of the light corresponding to the infinite imaging point, and the formula of the focal length

3) The nature of the object plane and the imaging plane, and the nature of the nodes in the

optical system

4) Graphic method for the imaging

5) Analytical method for the imaging (Newton's equations, Gauss formula) 6) The ideal formula of the multi-level imaging optical systems

7) The concept and the formula of the ideal magnification optical system, the relationship

between the two focal lengths in the ideal optical system, the combination formula and the tangent calculation formula of the ideal optical system

8

Chap. 3 Plane and the Plane system

1) The types of the planes and the role of optical components

2) The characteristics and nature of the plane mirror imaging, the rotation characteristics of plane

mirror, the principle and the application of the optical lever

3) The imaging characteristics of parallel plate, the axial displacement formula in the paraxial

region

4) The type of the reflectors, the basic purpose, the discrimination of the imaging orientation, the

equivalence and the expansion.

5) Prism effect, the minimum deviation angle formula and its applications, the angle deviation

formula of the optical wedge and its application

6) Prism dispersion, the dispersion curve, the concept of white light spectrum 7) The types and the characteristics of common optical materials

Chap. 4 Beam Limits in Optical Systems

1) The definition of aperture stop, entrance pupil, exit pupil, aperture angle, and their

relationships

2) The definition of field stop, entrance window, exit window, field angle of view, and their

relationships

3) The definition of vignetting, vignetting aperture, vignetting factor, and the relationship

between field diaphragm and aperture diaphragm

4) The basic structure, the imaging relationships and the beam limit in camera system 5) The basic structure, the imaging relationships and the beam limit in telescope system 6) The basic structure, the imaging relationships and the beam limits in micro-systems, the

principle of the object side optical path

7) The principle and the role of the pupil convergence

8) The definition, the role and the imaging relationship in field lens

9) Depth of field, the concepts of the close-range field depth and the far field depth, the

equations for depth of field and the influence factors

Chap. 5 The Calculation of the Optical Path of Light and the Aberration Theory

1) The definition, the types and the basic principles of aberration

2) The definition, the factors, the nature and compensation methods of seven geometric

aberrations

9

Chap. 6 The Typical Optical Systems

1) The definitions and characteristics of normal eye, myopia and hyperopia, the correction

method of non-normal eye, the calculation of the eyes ability

2) The concept, the expression and the significance of visual magnification ration, the

similarities and differences with the angular magnification optical system 3) Visual magnification for magnifying glass

4) The concepts and the formulas of microscope system, including: (1) the composition, the

imaging relations, the beam limit (2) visual magnification ratio equation (3) line field equation (4) numerical aperture and exit pupil D' (5) resolution of the objective lens (6) microscope effective magnification (7) depth of field in objective lens (8) visual adjustment 5) Critical illumination and Kohler illumination

6) The concepts and the formulas for telescope system, including: (1) the composition, the

imaging relations, the beam limit (2) visual magnification equation (3) the relationship between resolution and visual magnification (4) the effective resolution and the resolution of work

7) The concepts and the formulas of camera system, including: (1) the composition, the imaging

relationship, the beam limit (2) the three main parameters and their influence in photographic lens (3) the formula of resolution (4) the definition of aperture, and the relationship between aperture and the resolution, the surface illumination and the depth of field (5) the equations and factors for depth of field (6) the types of photographic lens

8) The concept of projection systems and formulas, including: (1) the basic requirements of the

system (2) of the main optical parameters (3) the conditions of its lighting system interface

Chap. 7 The Evaluation of Image Quality in Optical Systems

1) The image quality evaluation methods for optical systems, and their respective advantages

and disadvantages

2) The methods and the basic principles of quality determination in the imaging optical system

by evaluating the area under the MTF curve

3) The requirements of quality evaluation and the aberration correction in the telephoto objective

lens, the microscope objective lens, the camera lens and the eye lens.

Chap. 8 Basic Properties of electromagnetic field

1) Maxwells equation, material equation and the wave equation 2) Plane waves, simple harmonic waves and its characters. 3) Spherical waves and cylinder waves.

10

4) Reflection and refraction on the surfaces of dielectric 5) The superposition of waves

6) The phase velocity and the group velocity

Chap. 9 Interference and Interferometers

1) Interference and conditions

2) Young’s interference experiment (Characters, equipments, equations, phenomena and

applications )

3) The visibility of interference fringes 4) Interference with a plane-parallel plate 5) Interference with a wedge

6) Classical two-beam interferometers and their applications 7) Multiple-beam interference

8) The Febry-Perot interferometer and interference filters

Chap. 10 Diffraction

1) Diffraction and its realization; The Huygens principle and Fraunhofer diffraction 2) The Fraunhofer diffraction by a rectangular aperture 3) The Fraunhofer diffraction by a slit

4) The Fraunhofer diffraction by a circular aperture 5) The Fraunhofer diffraction by multiple slits 6) Gratings

Chap. 11 Polarization and foundations of crystal optics

1) Natural light and polarized light, Production of polarized light 2) Fresnels formulae, Brewsters Law and Malus law 3) Optical properties of uniaxial and biaxial crystals 4) Polarizer, wave plates and compensators 5) Polarized light matrix

6) Transform and measurement of polarized light 7) Interference of polarized lights

4. Semester Hour Structure

Topics Chap. 1 Chap. 2

Lecture Computer Lab. Experiment Practice Practice (Week) 4 6 11

2 Chap. 3 Chap. 4 Chap. 5 Chap. 6 Chap. 7 Chap. 8 Chap. 9 Chap. 10 Chap. 11 Sum 4 4 2 5 1 4 8 8 6 52 2 2 2 2 2 12 5. Grading

The assessment will be in the form of tests, assignments (10%),experiments (20%), mid-term exam (20%) and a final written exam (50%).

6. Text-Book & Additional Readings

Text-Book:

Daoyin Yu, Henying Tan. Engineering Optics (3rd in Chinese), China machine press, 2011 Additional Readings:

1) Yimo Zhang, Applied Optics (3rd in Chinese), Publishing House of Electronics Industry, 2008

2) Quantin Liang. Physical Optics (3rd in Chinese), Publishing House of Electronics Industry, 2009

3) Fenglin Zhang, Xuezhu Sun, Engineering Optics (in Chinese), Tianjin university press, 1988

4) Born & Wolf, Principles of Optics (7th in Chinese), Publishing House of Electronics Industry, 2006

5) Huaiyu Cai. Guide and exercises of engineering Optics (in Chinese), China mechanical Industry press, 2009

6) Eugene Hecht, Cunlin Zhang adapt. Optics, 4th edition, Higher education press, 2005 7) Born & Wolf, Principles of Optics, 7th edition, Cambridge University Press, 1999 8) Finchan & Freeman, Optics, 9th edition, Cambridge University Press, 1980

9) Jurgen R. Meyer, Introduction to Classical and Modern Optics, 2th, Prentice-Hall Inc. 10) Website: http://course.tju.edu.cn/gcgx/

12

因篇幅问题不能全部显示,请点此查看更多更全内容

Top