2005-2006学年第一学期期末考试试卷
课程代码: 12063A 课时: 48 课程名称:Linear Algebra 线性代数(英) 适用对象:2004级国际学院
1. Filling in the blanks (3’×6=18’) (1) Let
A=[2α,3γ]andB=[β,2γ] be (2×2) matrices, and det(A)=3,
det(B)=-2, then det(A+B)= .
⎡201⎤⎢320⎥−1A=(I+A)= . (2) Let ⎥, then ⎢⎢⎦⎣002⎥
⎡1⎤
⎢1⎥1α=⎢⎥
(3) Let 2⎢1⎥is a 4 dimension vector, A=
⎢⎥⎣1⎦
I−2ααT
and
B=I+2ααT, then the matrix AB= .
(4) Let A be a (3×3) matrix, and 1,2,3 are the eigenvalues of A. Then the eigenvalues of I+A* are .
(5) Let S={α1,α2,α3} be a linearly dependent set of vectors, where
⎡1⎤⎡1⎤⎡1⎤
⎥,α=⎢2⎥,α=⎢3⎥α1=⎢1⎢⎥2⎢⎥3⎢⎥. Then the scalar k is . ⎢⎢⎢⎦⎣k⎥⎦⎣3⎥⎦⎣1⎥
⎡1⎤⎡2⎤
⎢0⎥,β=⎢1⎥α=⎢⎥⎢⎥. Then the cross product α×β= . (6) Let
⎢⎢⎣3⎥⎦⎣1⎥⎦
1
2. Determining the following statement whether it is true(T) or false(F) (2’×6=12’)
(1) If A is an (m×n) matrix such that AX=0 for every X in Rn,then A is the (m×n) zero matrix. ( )
(2) If A and B are nonsingular (n×n) matrices then A-B is also nonsingular. ( )
(3) If U×V =0, then either U =0 or V =0 . ( )
(4) If A is nonsingular with A-1=AT, then det(A)=1 ( ) (5) If S is (n×n) and nonsingular, then A and S−1AShave the same eigenvalues. ( )
(6) If A is an (n×n) matrix such that det(A)=1,then Adj[Adj(A)]=A.
( )
3. (15’) Evaluate the determinant of the matrix
bbb⎤⎡a+b
⎢b⎥a+bbb⎢⎥⎢bba+bb⎥. ⎢⎥
bba+b⎦⎣b
4. (15’)
⎧2x1+λx2−x3=1
⎪
λx1−x2+x3=2, determine
Consider the system of equations ⎨
⎪4x+5x−5x=−1
23⎩1
2
conditions on λ that are necessary and sufficient for the system to be has only solution, infinite solutions, and no solution, and express the solutions by vectors. 5. (10’)
Let U and V be nonzero vectors such that U=V. show that U-V and U+V are orthogonal. 6. (15’)
⎡102⎤
⎥030A=⎢⎢⎥ and ABA−1=BA−1+3I. Find B. Let
⎢⎣201⎥⎦
7. (15’)
⎡1⎤⎡232⎤⎥⎢a42⎥1ξ=⎢A=⎢⎥ is an eigenvector of ⎢⎥, Let
⎢⎢⎣−1⎥⎦⎣1b1⎥⎦
(Ⅰ) Find the numbers a and b.
(Ⅱ) Find the eigenvalues of the matrix A.
3
因篇幅问题不能全部显示,请点此查看更多更全内容