您好,欢迎来到帮我找美食网。
搜索
您的当前位置:首页6013铝合金微裂纹分析

6013铝合金微裂纹分析

来源:帮我找美食网
JournalofMaterialsProcessingTechnology231(2016)18–26

ContentslistsavailableatScienceDirect

JournalofMaterialsProcessingTechnology

journalhomepage:www.elsevier.com/locate/jmatprotec

Micro-scalemodelbasedstudyofsolidificationcrackingformationmechanisminAlfiberlaserwelds

XiaojieWanga,d,FengguiLua,b,∗,Hui-PingWangc,∗,ZhaoxiaQud,LiqianXiad

ShanghaiKeyLaboratoryofMaterialsLaserProcessingandModification,SchoolofMaterialsScienceandEngineering,ShanghaiJiaoTongUniversity,Shanghai200240,PRChinab

CollaborativeInnovationCenterforAdvancedShipandDeep-SeaExploration,Shanghai200240,PRChinac

ManufacturingSystemResearch,GMGlobalR&D,Warren,MI48090,USAd

WeldingandCorrosionProtectionTechnologyDepartmentResearchInstitute,BaoshanIron&SteelCo.Ltd.,Shanghai201900,PRChina

a

article

info

abstract

Articlehistory:

Received27September2015Receivedinrevisedform19November2015

Accepted11December2015

Availableonline15December2015

Keywords:

Micro-scalemodelSolidificationcrackingWeldingspeedPressuredropMicrostructure

Effectofweldingspeedonsolidificationcrackingsusceptibilityinfiberlaserweldingof6013aluminumalloywasinvestigatedbyconsideringbothmechanicalandmetallurgicalfactors.Afiniteelementmodelwasdevelopedatcolumnargrainscaletocalculatethestrainlocalizationinthemushyzone.BasedontheRappaz-Drezet-Gremaud(RDG)criterionandstudyfromthedevelopedmicro-scalemodel,thepressuredropintheinter-dendriticliquidfilmwasusedascrackingindextoinvestigatetheformationofsolidificationcracking.Coolingrate,solidfraction,localstrainrateandmicrostructurecharacteristicresultedfromdifferentweldingspeedswereexamined.Crackingsensitivitywasshowntodecreasewiththeincreaseofweldingspeedintherangebetween2.5m/minand3.5m/mininfiberlaserweldingof6013aluminumalloy.Numericalcalculationsshowedthatmechanicaltensilestraininthesolidgrainwasintheorderofmagnitudeof10−4whilethestrainintheliquidfilmisintheorderofmagnitudeof10−2.Thetotalpressuredropattherootofcolumnargrainswasmorethan150kPa,whichwasdeemedasthecriticalpressuredroptoformacrackinthisstudy.Thetransversesolidificationcrackingwaspronetoinitiateinthesecondhalfofmushyzonewherethesolidfractionwasbetween90%and94%.

©2015ElsevierB.V.Allrightsreserved.

1.Introduction

Aluminumalloyshavebeenwidelyemployedinbodycon-structionofautomobilesandaircraftduetotheiroutstandingmechanicalpropertiesandformability.Fusion-basedweldingpro-cessessuchasarcweldingandlaserweldingarecommonlyusedinjoiningtheAlmaterials.However,solidificationcrack,whichisharmfultostructuralintegrity,couldeasilyexistintheweldedAljoints(Kou2003).Thesolidificationcrackingoccursinthemushyzonewheninsufficientamountofliquidflowsbacktohealthetear-ingofinter-dendriticliquidfilmduringthematerial’ssolidificationprocesses(Hatamietal.,2008andSheikhietal.,2014).

Forhighmanufacturingproductivity,weldingspeedisusuallysettobeaslargeaspossibleinpracticalapplications.Itisgenerallyacceptedinweldingcommunitythatlargeweldingspeedwouldleadtohotcracking(Nieletal.,2013).Cicalaetal.(2005),Fabregue

∗Correspondingauthors.

E-mailaddresses:Lfg119@sjtu.edu.cn(F.Lu),hui-ping.wang@gm.com(H.-P.Wang).

etal.(2008a)andTirandetal.(2013)independentlyinvestigatedtheeffectofweldingspeedonhotcrackingduringNd:YAGlaserweldingofAA6056aluminumalloywithweldingspeedintherangebetween3m/minand6m/min,4m/minand6m/min,and1.2m/minand3.5m/min,respectively.Theyallobservedthathighweldingspeedresultedinhighhotcrackingsusceptibility,whichwasexplainedbytheresultedhighweldpoolinstability,highcool-ingrateandhighsolidificationrate.El-BatahgyandKutsuna(2009)reportedthatthehotcrackingstartedtooccurinAA6061,AA5083andAA5052aluminumalloysduringCO2laserweldingwhentheweldingspeedincreasedfrom3m/minto6m/min.Haboudouetal.(2003)showedthatuseofasecondbeamtodecreasethecoolingrateofmoltenpoolwouldeffectivelypreventhotcracking.

However,positiveinfluenceofweldingspeedonhotcrackingofaluminumalloyswasalsoreported.Chihoski(1972)indicatedanimprovementinweldabilitywhenincreasingtheweldingspeedto0.8m/mininthegastungstenarc(GTA)weldingofAA2014alu-minumalloy.Thehighweldingspeedwouldinduceacompressiveloadingzoneatthetailofmoltenpoolthathelpedsuppress-inghotcracking.AbbaschianandLima(2003)studiedthehotcrackingsensitivityofAl–Cualloywithvariousweldingspeeds

http://dx.doi.org/10.1016/j.jmatprotec.2015.12.0060924-0136/©2015ElsevierB.V.Allrightsreserved.

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

19

incontinuous-waveCO2laserwelding.Withincreasingweldingspeedfrom0.06m/minto3m/min,thecrackingsusceptibilityincreasedfirstandthendroppedduetotherefinementofporositiesandchangesofliquidfraction.

Asdiscussedabove,theinfluenceofweldingspeedonhotcrackingvariesfordifferentweldingprocessesandatdifferentweldingspeed.Thecoolingrate,solidificationrate,stressstateandmicrostructurecharacteristicallwouldinfluencethehotcrack-ingsusceptibility.EskinandKatgerman(2004)statedthatthehotcrackingwasaphysicalphenomenonaffectedjointlybythermal,mechanicalandmetallurgicalfeatures.Hence,acomprehensiveunderstandingofhotcrackingsensitivityatdifferentweldingspeedshouldtakeintoaccountallthefactorsmentionedabove.

Rappazetal.(1999)proposedahotcrackingmodel,namedasRDG(Rappaz-Drezet-Gremaud)model,whichconsideredtheeffectsofliquidfeeding,permeabilityofmicrostructure,solidfrac-tionanddeformationofthegrainsonthehotcrackinginitiation.Wangetal.(2004)analyzedtheeffectofgrainboundarymisorien-tationonhotcrackingtendencybasedontheRDGmodel.DrezetandAllehaux(2008)systematicallyanalyzedtheapplicationofRDGmodelinthepredictionofhotcrackingphenomenoninthewelds.Nieletal.(2013)extendedtheRDGmodelbyintroducingmicrostructurepredictionandinvestigatedtheeffectofweldingcurrentonhotcrackingintheGTAwelding.Sheikhietal.(2014)usedtheRDGmodeltocalculatethehotcrackingsensitivityinsuccessivelaserweldspotsconsideringpreheatingeffect.

Inthisstudy,theeffectofweldingspeedonsolidificationcrack-inginfiberlaserweldingof6013aluminumalloywasinvestigatedexperimentallyfirst.Next,amicro-scalefiniteelementmodelofacolumnargraininmushyzonewasdevelopedwhichmainlyinves-tigatedthestrainrateofgrainswiththeexistenceofliquidfilm.BasedontheRDGmodelandthecorrespondingpressuredrop,theeffectofweldingspeedonhotcrackingsensitivitywasanalyzed.Otherimportantstatevariablessuchascoolingrate,solidfraction,stressstateandmicrostructurecharacteristicwerealsoexamined.Also,thepossibleinitiationsiteofsolidificationcrackinginfiberlaserweldingofaluminumalloywaspredicted.

2.Weldsolidificationcrackingmodel

2.1.RDGcriterion

Duetolargetemperaturegradientexistingnearfusionlineofthemoltenpoolinlaserwelding,columnardendritestructurewouldappearnearthefusionlinewhileequiaxedgrainsexistinthecenteroffusionzonewheretemperaturegradientdecreases(Nieletal.,2013).AccordingtothestudyofFabregueetal.(2008b),solid-ificationcrackinginitiatesnearthefusionlinewherecolumnargrainsexist.Toinvestigatetheformationofsolidificationcrack-ingincolumnardendritestructure,Rappazetal.(1999)proposedtheRDGmodelanddeemedcrackasaresultbetweenflowrateandthedeformationandshrinkageofcolumnargrains,asshowninEq.(1):

󰀃

L

flvl,x=−(1+ˇ)

fsεdx˙−vTˇfl

(1)0

vT=Vcos˛

(2)

whereflistheliquidfraction,vl,xisthevelocityofthefluidalong

thex-axiswhichisparalleltocolumnargraingrowthdirection,ˇistheshrinkagefactor,Listhemushyzonelengthalongx-axis,fsis

thesolidfraction,ε

˙isthedeformationrateofgrainboundaryper-pendiculartothegraingrowthdirection,andvTisthesolidificationrate.Thefirsttermontheright-handsideofEq.(1)istheflowratecausedbythetensiledeformationofmushyzone,andthesecondtermontheright-handsideofEq.(1)istheflowrateassociated

withthesolidificationshrinkageofmushyzone.Raietal.(2008)providedtherelationshipbetweenthesolidificationrateandtheweldingspeedinEq.(2),whereVistheweldingspeedand␣istheanglebetweenthenormalofsolid-liquidinterfaceandthedirectionofweldingvelocity.

Thepermeabilityofmicrostructurereflectsthedegreeofmicrostructureinbeingfilledbackbyliquidflow.Nieletal.(2013)definedthepermeabilityofmushyzoneinAlweldsasfollows:

K=

󰀅2

3

2(1−fs)180f(3)

s2

where󰀅2isthesecondarydendritearmspacing.Theflowrateisrelatedtothepressuregradientintheliquid,thepermeabil-ityofthemushyzoneandviscosityoftheliquid(󰀆)byf−(K/󰀆)(dp/dx),lvl,x=whichcitedfromthestudyofKuboandPehlke(1985).SubstitutingthisflowratecalculationintoEq.(1),thepres-suredropintheinterdendriticliquidcouldbecalculatedasfollows(Rappazetal.,1999):

󰀃

L

󰀁P=

180fs2󰀅2(1+ˇ)󰀆

E(x)

20

(1−fs3

dx+

1802vTˇ󰀆

)

󰀅2

󰀃L×

󰀁fs

󰀂2

dx

(4)

0

1−fs

IntheRDGmodel,theinterdendriticliquidpressuredropbetweenthetipandrootofthedentriteisrequiredtoensurethatadequateliquidfeedingbackoccurstocompensatethedeforma-tionandshrinkageofmushyzone.Ifthepressuredropreachesthecriticalpressuredropthatacavityforms,hotcrackinginitiates.Eq.(4)tellsusthatthesolidificationrateatcolumnargraintip,solidfraction,deformationrateofthecolumnargrain,lengthofmushyzoneandsecondarydendritearmspacingallwouldaffectthepres-suredrop,hencethesusceptibilityofsolidificationcracking.

BasedontheworkofRappazetal.(1999),shrinkagefactorandviscosityweretakenas0.06and0.001PasforAlwelds,respec-tively.Thesecondarydendritearmspacing󰀅2couldbeobtainedbyexperimentalobservation.Theothers,suchasmushyzonelength,solidfraction,solidificationrateandstrainrate,aretakenfromcalculatedresults.

2.2.Thermal-mechanicalsimulationofweldingprocess

Wenowknowthathotcrackingsusceptibilityisaffectedbymanyfactorsandthesefactorsaredeterminedbythethermalfieldandmechanicaldeformationintheprocess.Inordertoobtaintemperatureandstrain/stressdistributionintheweld,athermal-mechanicalsimulationofthelaserweldingprocessisperformed.Theheatconductionandthethermal-elastic-plasticdeformationareconsideredinthesimulationtocalculatethetem-peratureandstrain/stress.Toincreasecalculationprecisiont,athreedimension’s(3D)thermal-mechanicalmodelisdevelopedwiththemodelsizeof60mm×35mm×2.5mm.Inaddition,themodelconsiderstemperature-dependentmaterialphysicalparam-eters,avolumetricheatsourcemodel,strain/stressrelaxationintheweldmoltenpoolandsolidificationshrinkageoftheweldmetal.Thetemperature-dependentmaterialphysicalparametersof6013aluminumalloyusedinthemodelaregiveninFig.1.

ThefiberlaserheatinputwasmodeledbyacylindricalGaussiandistributionheatmodel,whichwasproposedbyKongetal.(2011).ItisdescribedbyFeng(1994)torepresentthestress/strainrelax-ationofliquidmetalinweldpoolandtheelementrebirthmethodwasadopted.Elementswhosetemperaturesareovertheliquiduspointwouldbekilled(zerostress)inthemodel,andre-birthedagainastheirtemperaturesdroptobelowerthantheliquidus

20

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

Fig.1.Temperature-dependentmaterialphysicalparametersof6013aluminumalloy:(a)physicalparametersand(b)mechanicalproperties.

point.Thesolidificationshrinkageofweldmetalwasconsideredinthemodelbysettingthereferencetemperatureofsolidifiedmetaltoliquiduspointandaddingthevolumeshrinkageofsolidifiedmetaltothermalexpansion.

2.3.Micro-scalemodelforlocalstraininthemushyzone

Accordingtothesolidificationtheory,DavidandVitek(1989)indicatedthatthecolumnartoequiaxedtransition(CET)meantthattherapidgrowthofequiaxedgrainsinthecenteroffusionzoneinhibitedthecolumnargraingrowth.Forweldmicrostruc-ture,thepossiblelocationofcrackinitiation,whichissurroundedbyliquidusline(TL),solidusline(Tcoalescence)andCETline,wouldbesubdividedintotworegions,asshowninFig.2.RegionAisdefinedaslocationwherecolumnargraintipconnectswithmoltenpoolwhileRegionBisdefinedaslocationwherecolumnargraingrowthispreventedbyequiaxedgrain.MicrostructureinRegionAhasasimilarcolumnarmorphologyasonediscussedinRDGmodel.How-ever,thesolidificationrateatthecolumnargraintipiszeroduetothecolumnartoequiaxedtransitioninRegionB,andtherequiredflowrateinPartBisonlytocompensatethedeformationofmushyzoneifnocrackforms.

Predictionofthecrackingsusceptibilityandpossibleinitiationlocationrequiresknowledgeofmicrostructurecharacteristicandlocalstrainrateperpendiculartocolumnargrain.Themicrostruc-turecharacteristic,whichincludesthecolumnargrainlength,primarydendritearmspacingofcolumnargrainandorientationofthegrainboundaryinthemacroscopicframe,canbeobtainedby

Fig.2.Theschematicofweldmicrostructure.

Fig.3.SizeandboundaryconditionoftheFEMmodeloncolumnargrains.

experimentalobservations.ThelocalstrainrateoncolumnargrainiscalculatedbyaFEMmodeloncolumnargrainsinthisstudy.AsshowninFig.3,thedimensionsofFEMmodeloncolumnargrainsaredeterminedbymushyzonelength(L),primaryden-dritearmspacing(󰀅)andthicknessofliquidfilm(d).Basedonthetemperaturedistributionobtainedfromthethermal-mechanicalweldingprocesssimulation,themushyzonelengthistakenasdis-tancebetweenliquiduspointline(921K)andfusionlineinRegionA,andthecolumnargrainlengthisdeemedasmushyzonelengthinRegionB.Thicknessofliquidfilmbetweencolumnargrainsiscal-culatedbyEq.(5)where󰀅isprimarydendritearmspacingandfsisthesolidfraction,whichiscalculatedwiththehelpofThermo-Calcsoftware.

d=󰀅(1−fs)

(5)

TheFEMmodeloncolumnargrainsconsistsofsolidandliq-uidphasesatthesametime,andacontinuum-levelmodelingisemployedtocalculatethelocalstrainrateperpendiculartocolum-nargrainbyspecialtreatmentofliquidphysicalparameters.ThesolidandliquidphysicalparametersusedinthemodelaregiveninFig.1(b)andFig.4,respectively.Themechanicalpropertiesofliquidphaseweretreatedasone-twentiethofthesolidbyatrial-and-erroriterativeprocessbasedonthereportedfindingsbyConiglioandCross(2009)andBordreuilandNiel(2014).Theirworkshowedthatthelocalstraininliquidwasabout102-103timesoflocalstraininsolid.Theboundaryconditionoftemperatureanddisplacementwereobtainedfromprocesssimulationandlinearlyinterpolatedfromtheprocessdomaintothecolumnargraindomain.Temper-aturealongthecolumnargrainisusedtocalculatesolidfraction,

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

21

Fig.4.Temperature-dependentmaterialphysicalparametersusedintheFEMmodeloncolumnargrains.

andthecalculatedlocalstrainrateofthesolid-liquidinterfaceisadoptedasthedeformationrateofsolidsinEq.(4).

TheRDGcriterionsimplifiesthefeedingbackofliquidflowsonlyalongthegrowthdirectionofcolumnargrain.Therefore,onlystrainongrainboundaryperpendiculartothegrowthdirectionofgrainisrequired.Consideringtheorientationofcolumnargrainboundaryinmacroscopicframe,BordreuilandNiel(2014)proposedthefor-mulationforthestrainperpendiculartocolumnargrainasfollows:

referringtothetestofPloshikhinetal.(2007)thatthemechanicalclampingwasappliedononesideoftheweldlinewhiletheothersideisfree.Inthisstudy,thedistancebetweenweldcenterlineandclosestfreeedgewas7.5mm,andthedistancefromtheweldcen-terlinetotheclampingedgewas20mm.Bead-on-plateweldwasadoptedintheexperimenttoavoidtheinfluenceofgapbetweentwooverlapsheetsonthecrackingsusceptibility.TheAlspecimensurfaceswerecleanedpriortoweldingtesttoremoveanyoilsandcontaminations.

Theweldingtestshowedthattransversecrackappearedwhentheweldingspeedswere2.5m/min,2.7m/minand3.0m/min.Thatis,thetransversesolidificationcrackingispronetoinitiatewhentheweldingspeedisrelativelylowforfiberlaserweldingof6013aluminumalloy.Fig.5givespicturesoftheweld’stopsurface.Fig.5(a)showstheweldsurfaceforV=2.7m/minwhileFig.5(b)givestheweldsurfaceforV=3.3m/min.AtthelowweldingspeedofV=2.7m/min,theweldbeamiswideandthetransversesolidificationcrackingwasobservedtoinitiatenearthefusionline,asshowninFig.5(a).Whentheweldingspeedincreasedto3.3m/min,thetransversesolidificationcrackingdisappeared.Therefore,theexperimentalresultsindicatedthatthelowweldingspeedincreasedsolidificationcrackingsusceptibilityinthefiberlaserweldingof6013aluminumalloys.

4.Resultsanddiscussion

4.1.Metallographicanalysis

ε=εxsinÂ+εycos2Â+2󰀇xysinÂcosÂ

2

(6)

whereεxismechanicalstraininhorizontaldirection,εyismechan-icalstraininverticaldirectionandÂistheanglebetweenthecolumnargraindirectionandtheweldingvelocity.Oncethestrainwasobtained,thestrainratecanbeeasilycalculatedanditvariesfromlocationtolocationinthemushyzone.

3.Weldingexperiment

AA6013aluminumalloyspecimenswiththedimensionof150mm×125mm×2.5mmwereusedintheweldingtest.ThechemicalcompositionofAA6013is0.95Mg,0.62Si,0.95Cu,0.22Fe,0.37Mn(wt.%),balancedbyAl.YLS-10000fiberlasersystemwastakenasheatingsourcewithspotdiameterbeing0.8mm.ToinvestigatetheeffectofweldingspeedonsolidificationcrackinginfiberlaserweldingofAA6013aluminumalloy,wetestedwiththeweldingvelocitybeing2.5m/min,2.7m/min,3.0m/min,3.3m/minand3.5m/min.Thelaserpowerwas3.3kW,andargonshieldinggasflowratewas15L/min.Experimentaltestsystemwassetup

Grainstructurecharacteristicplaysasignificantroleinsolidificationcrackingbehavior.ThemetallographicpicturesofmicrostructurefortwodifferentweldingspeedsaregiveninFig.6(a–d).Thepicturesshowthatthecolumnardendritegrainsgrowneartwosidesoffusionzoneandtheequiaxeddendritegrainsappearinthemiddleoffusionzoneforbothcases.Sincetheweld-ingspeeddeterminesthetemperaturegradientandsolidificationrate,theresultantmicrostructureinFig.6(a,b)exhibitobviousdis-tinction.Thecolumnartoequiaxedtransitionwasadvancedwhentheweldingspeedincreasedfrom2.7m/minto3.3m/min.Thelengthofcolumnargrainwasabout500␮mwithweldingspeedof2.7m/minand300␮mwithweldingspeedof3.3m/min.Fig.6(c)and(d)showsthelocalamplificationofcolumnargrainsfortwocases.Thecolumnargrainboundariesareplottedbyblackdottedlines.Asasimpleestimation,theprimarydendritearmspacingisabout51␮mforthespeedof2.7m/minand60␮mforthespeedof3.3m/min.BasedonthestudyofKimuraetal.(2009)thatafinergrainsizeledtolowersusceptibilitytocracking,grainmorphol-ogyinducedbythelowerweldingspeedinthisstudyhadlessequiaxedgrainsandmorecolumnargrains,henceahighersolidifi-cationcrackingsusceptibility.Fromthemetallurgicalpointofview,

Fig.5.Thetopsurfacesofweldgeneratedwithweldingspeedof:(a)V=2.7m/minand(b)V=3.3m/min.

22

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

Fig.6.Themicrostructurecharacteristicsofweldfordifferentweldingspeeds:(a)V=2.7m/min;(b)V=3.3m/min;(c)and(d)arelocalamplificationofcolumnargrains.

Fig.7.Calculatedtemperatureevolutionversustheweldingtimeatapointoftheweldcenterline.

Fig.8.Thecalculatedlongitudinalmechanicalstraindistributionontopsurfaceoftestplatesfortwocases:(a)V=2.7m/minand(b)V=3.3m/min.

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

23

Fig.9.Thelocalmechanicalstrainperpendiculartocolumnargrainsontopsurface:(a)V=2.7m/minand(b)V=3.3m/min.

24

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

thelongmushyzoneincreasesthedifficultyofliquidmetaltoflowback,andsmallprimarydendritearmspacingincreasesthedegreeofstressconcentration.

4.2.Thermal-mechanicalfieldduringweldingprocess

Fig.7illustratesthetemperatureevolutionversustheweldingtimeatapointoftheweldcenterline.Thecoolingratebetweentheliquidusandsoliduspointsisinvestigated.Duetothefastweldingspeedinlaserwelding,thecoolingratesforbothcasesareveryhighwith3380K/sfor2.7m/minand4770K/sfor3.3m/min.Thehighertheweldingspeed,thehigherthecoolingrate.

Solidificationcrackingoccursinmushyzonewhereliquidandsolidphasescoexist.Inthisstudy,thetemperaturerangebetweenliquiduspointandcoalescencepointisdefinedasmushyzone.Thelongitudinalmechanicalstrain,whichisrelatedtotransversesolidificationcracking,isshowninFig.8.Thetensilelongitudi-nalstrainappearsinlaterpartofmushyzoneforbothcases,whichpromotescracking.Themaximumlongitudinalmechanicalstraininmushyzoneis1.4%for2.7m/minand0.9%for3.3m/min,respectively.Basedontheresultsofweldingprocesssimulation,relativelysmallcoolingrateandlargedeformationareinducedatlowweldingspeed.Inordertodeterminethecrackingsensitivity,westillneedtoknowlocalstrainrateinadditiontothecoolingrateanddeformationofthemushyzonewehavecalculatedfromthethermal-mechanicalanalysis.

4.3.Distributionoflocalstrainrate

Fig.9givesthecontouroflocalmechanicalstrainperpendic-ulartocolumnargrainsatdifferentpositionsinmushyzone.Theliquidfilmsitsinthemiddleofcolumnargrains.Thedifferencesofcolumnargrainsarethethicknessofliquidfilm,whichpresentsthedifferentsolid-liquidfractionduringthesolidificationprocess.

Forpositionsaandb,whichsitsintheearlypartofmushyzone,thecompressivemechanicalstrainoccurs.Frompositionctopositione,thetensilemechanicalstraindistributesinthewholecolumnargrain.Itisnotedthatthelocalmechanicalstraininsolidcolumnargrainismuchsmallerthanmechanicalstraininliquidfilm,andtheextentofdifferenceincreaseswiththedecreasingofliquidfilmthickness.Forthecasewithweldingspeedof2.7m/min,themagnitudeorderoflocalmechanicalstrainisabout10−4insolidgrainandtheorderoflocalmechanicalstraininliquidfilmis10−2,whichisabout102–103timesthanthemechanicalstraininsolid.Thesamecharacteristicisalsofoundincasewithweldingspeedof3.3m/min.Inaddition,thelocalmechanicalstrainofsolid–liquidinterfaceisrelativelylargeinthecaseoflowweldingspeed.

Forthetestcasewithweldingspeedbeing2.7m/min,therateofmechanicalstrainperpendiculartothesolid-liquidinterfacealongcolumnargrainisshowninFig.10.Theblackdottedlinerepresentsinitiationofthecolumnargrainandthex-coordinaterepresentsthelocationalongthelengthofgrain.Intheearlypartofmushyzonesuchaspositionsa,bandc,themechanicalstrainrateonthesolid-liquidinterfaceislowerthanthemechanicalstrainrateinthelatterpartofmushyzonesuchaspositionsdande.Themaximumlocalmechanicalstrainrateoccursinthelatterpartofmushyzonewiththemagnitudeorderof10−1underthetestcondition.

4.4.Analysisofsolidificationcrackingsusceptibility

Thefeedingbackofliquidflowplaysasignificantroleinthesolidificationcrackingbehavior.Fig.11showstherequiredflowratetocompensatedeformationandshrinkageofcolumnargrainsinthemushyzone.Therequiredflowrateissameatpositionaandpositionbsincethesolidificationshrinkageisthedominanteffectinthisregion,whereasthecontributionofstrainrateisvery

Fig.10.Theperpendicularstrainratesonthesolid-liquidinterfacealongcolumnargrain.

Fig.11.Therequiredflowratetocompensatedeformationandshrinkageofcolum-nargraininmushyzone.

little.Atpositionc,theeffectofsolidificationshrinkagedisappearsbecausethecolumnargrainsstopgrowthalreadyandtheeffectofstrainrateisstillsmallatthismoment.Hence,therequiredflowratereachesthesmallestvaluesatpositionc.Withtheincreaseofsolidfraction,thestrainrategrowssignificantly,asshowninFig.10.Asaresult,therequiredflowrateishighatpositiond.Thecolumnargrainlengthdecreasesfrompositiondtopositionewhilethestrainratedoesnotincreasetoomuch,andthecompetingresultsisthattherequiredflowratedecreasesagainfrompositiondtopositione.Comparingtwodifferentweldingspeeds,wenotethatthelowweldingspeedneedsrelativelyhighflowratetocompensategraindeformationandshrinkage,whichismainlyinducedbythehighstrainrateandlargecolumnargrainlengthatlowweldingspeed.

Fig.12showstheshrinkageanddeformationcontributionstothepressuredropintheinterdendriticliquid.Undertheconditionofthistest,themagnitudeofpressuredropinducedbydeforma-tionisobviouslyhigherthanpressuredropinducedbyshrinkage,whichindicatesthatthestrainrateismoresignificantthansolid-ificationrateincontrollingthesolidificationcrackinginitiationinthistest.Fig.13showsthesolidificationcrackingsusceptibilityfordifferentweldingspeedsbasedonthepressuredropattherootofcolumnargrains.Drezetetal.(2008)used150kPaasthecriti-calpressuredropforcrackinginitiationinAlweldsandthisvalueisalsoadoptedinthisstudy.Thecalculatedresultindicatesthatthetestcasewithweldingspeedbeing2.7m/minissusceptibleto

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

25

Fig.12.(a)Mechanicalcontributiontothepressuredropand(b)shrinkagecontributiontothepressuredropattherootofcolumnargrains.

whichisalmost102–103timesofthelocalmechanicalstraininsolid.

3.Pressuredropexceedingthecriticalvalueforcrackformationmainlyoccursinthesecondhalfofmushyzonewherethesolidfractionisbetween90%and94%.Thesolidfractionof90%couldbedeemedasthecriticalsolidfractionatwhichcrackinitiates.4.Themodeldevelopedinthisstudydeemsthecrackasaresultofthefracturebyliquidfilmamongcolumnargrains.So,thepro-posedmicroscalemodelcouldbeextendedtootherAl-basedalloyswhensolidificationcrackinginitiationrelateswiththeliquidfilm.

Acknowledgments

Fig.13.Thetotalpressuredropattherootofcolumnargrainsandthepotentiallocationofsolidificationcrackinginmushyzone.

solidificationcracking,whichagreeswellwiththeexperimentaltests.ThesusceptiblelocationofcrackinginitiationisalsorevealedinFig.13wherethefirsthalfofmushyzonewasnotsensitivetocrackingandtheriskyregionofcrackinginitiationmainlycon-centratedonthesecondhalfofmushyzonenearpositiond.Inthisstudy,thedifferentpositionscouldbedeemedasdifferentsolidfractionsduringsolidificationprocess.Basedonthecalculatedresults,solidfractionof90%couldbedeemedasthecriticalsolidfractionatwhichpressuredropexceedsthecriticalvalueforcrackformation.

Thisworkwascarriedoutintheframeworkoftheproject“Investigationonlaserweldingofaluminumalloysthroughpro-cesssimulation”sponsoredbyGeneralMotorsGlobalResearch&Development.Theauthorsalsogratefullyacknowledgethefinan-cialsupportbytheNationalNaturalScienceFoundationofChina(GrantNo.51204109).

References

Abbaschian,L.,Lima,M.S.F.,2003.Crackingsusceptibilityofaluminumalloys

duringlaserwelding.Mater.Res.6,273–278.

Bordreuil,C.,Niel,A.,2014.Modelingofhotcrackinginweldingwithacellular

automatoncombinedwithanintergranularfluidflowmodel.Comp.Mater.Sci.82,442–450.

Cicala,E.,Duffet,G.,Andrzejewski,H.,Grevey,D.,Ignat,S.,2005.Hotcrackingin

Al–Mg–Sialloylaserwelding–operatingparametersandtheireffects.Mater.Sci.Eng.A395,1–9.

Chihoski,R.A.,1972.Thecharacterofstressfieldsaroundaweldarcmovingon

aluminumsheet.Weld.J.51,9–18.

Coniglio,N.,Cross,C.E.,2009.Mechanismsforsolidificationcrackinitiationand

growthinaluminumwelding.Metal.Mater.Trans.A40,2718–2728.

David,S.,Vitek,J.,1989.Correlationbetweensolidificationparametersandweld

microstructures.Int.Mater.Rev.34,213–245.

Drezet,J.,Lima,M.,Wagniere,J.,Rappaz,M.,Kurz,W.,2008.Crack-freealuminum

alloyweldsusingatwinlaserprocess.ProceedingsofInternationalConferenceonSafetyandReliabilityofWeldedComponentsinEnergyandProcessingIndustry,87–94.

Drezet,J.M.,Allehaux,D.,2008.ApplicationoftheRappaz-Drezet-GremaudHot

TearingCriteriontoWeldingofAluminiumAlloysHotCrackingPhenomenainWeldsII.Springer,pp.27–45.

Eskin,D.,Katgerman,L.,2004.Mechanicalpropertiesinthesemi-solidstateand

hottearingofaluminiumalloys.Prog.Mater.Sci.49,629–711.

El-Batahgy,A.,Kutsuna,M.,2009.LaserbeamweldingofAA5052,AA5083,and

AA6061aluminumalloys.Adv.Mater.Sci.Eng.2009,1–9.

Fabregue,D.,Deschamps,A.,Suery,M.,Proudhon,H.,2008a.HotTearingDuring

LaserButtWeldingof6xxxAluminiumAlloys:ProcessOptimisationand2D/3DCharacterisationofHotTearsHotCrackingPhenomenainWeldsII.Springer,pp.241–255.

5.Conclusions

Inthisstudy,effectofweldingspeedonsolidificationcrackingsusceptibilityduringfiberlaserweldingof6013aluminumalloywasinvestigatedconsideringboththemechanicalandmetallurgi-calfactors.First,afiniteelementmodelwasdevelopedatcolumnargrainscaletocalculatethestrainlocalizationinthemushyzone.TheRDGcriterionwasusedforthestudyofeffectofweldingparametersoncrackingsusceptibility.Themainconclusionsareasfollows:

1.Duringthefiberlaserweldingof6013aluminumalloy,increas-ingweldingspeedfrom2.5m/minto3.5m/minwouldincreasethesusceptibilityoftransversesolidificationcracking.

2.Overtherangeofexperimentsconsidered,theorderofmag-nitudeoflocaltensilemechanicalstrainisabout10−4insolidgrainwhiletheorderofmagnitudeofstraininliquidfilmis10−2,

26

X.Wangetal./JournalofMaterialsProcessingTechnology231(2016)18–26

Fabregue,D.,Deschamps,A.,Suery,M.,Proudhon,H.,2008b.Twoand

three-dimensionalcharacterizationsofhottearsinaAl–Mg–Sialloylaserweld.Scr.Mater.59,324–327.

Feng,Z.,1994.Acomputationalanalysisofthermalandmechanicalconditionsfor

weldmetalsolidificationcracking.Weld.World33(5),340–347.

Hatami,N.,Babaei,R.,Dadashzadeh,M.,Davami,P.,2008.Modelingofhottearing

formationduringsolidification.J.Mater.Process.Technol.205,506–513.Haboudou,A.,Peyre,P.,Vannes,A.,Peix,G.,2003.Reductionofporositycontent

generatedduringNd:YAGlaserweldingofA356andAA5083aluminiumalloys.Mater.Sci.Eng.A363,40–52.

Kimura,R.,Hatayama,H.,Shinozaki,K.,Murashima,I.,Asada,J.,Yoshida,M.,2009.

EffectofgrainrefinerandgrainsizeonthesusceptibilityofAl–Mgdiecastingalloytocrackingduringsolidification.J.Mater.Process.Technol.209,210–219.Kou,S.,2003.Solidificationandliquationcrackingissuesinwelding.JOM55,

37–42.

Kong,F.,Ma,J.,Kovacevic,R.,2011.Numericalandexperimentalstudyof

thermallyinducedresidualstressinthehybridlaser–GMAweldingprocess.J.Mater.Process.Technol.211,1102–1111.

Niel,A.,Bordreuil,C.,Deschaux-Beaume,F.,Fras,G.,2013.Modelinghotcracking

in6061aluminiumalloyweldmetalwithmicrostructurebasedcriterion.Sci.Technol.Weld.Join.18,154–160.

Ploshikhin,V.,Prikhodovski,A.,Ilin,A.,Heimerdinger,C.,Palm,F.,2007.Computer

aideddevelopmentofthecrack-freelaserweldingprocesses.KeyEng.Mater.353–358,1984–1994.

Rappaz,M.,Drezet,J.M.,Gremaud,M.,1999.Anewhot-tearingcriterion.Metal.

Mater.Trans.A30,449–455.

Rai,R.,Kelly,S.,Martukanitz,R.,DebRoy,T.,2008.Aconvectiveheat-transfer

modelforpartialandfullpenetrationkeyholemodelaserweldingofastructuralsteel.Metal.Mater.Trans.A39,98–112.

Sheikhi,M.,MalekGhaini,F.,Assadi,H.,2014.Solidificationcrackinitiationand

propagationinpulsedlaserweldingofwroughtheattreatablealuminiumalloy.Sci.Technol.Weld.Join.19,250–255.

Tirand,G.,Arvieu,C.,Lacoste,E.,Quenisset,J.M.,2013.Controlofaluminiumlaser

weldingconditionswiththehelpofnumericalmodelling.J.Mater.Process.Technol.213,337–348.

Wang,N.,Mokadem,S.,Rappaz,M.,Kurz,W.,2004.Solidificationcrackingof

Kubo,K.,Pehlke,R.D.,1985.Mathematicalmodelingoftheporosityformationin

solidification.Metal.Mater.Trans.B16,359–366.

superalloysingle-andbi-crystals.ActaMater.52,3173–3182.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- banwoyixia.com 版权所有 湘ICP备2023022004号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务